Loading…

Effects of the novel selective κ-opioid receptor agonist NP-5497-KA on morphine-induced reward-related behaviors

Opioid addiction and the opioid overdose epidemic are becoming more serious, and the development of therapeutic agents is essential for the pharmacological treatment of substance use disorders. The κ-opioid receptor (KOP) is a member of the opioid receptor system that has been gaining attention as a...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-10, Vol.13 (1), p.18164-18164, Article 18164
Main Authors: Ide, Soichiro, Hirai, Toshitake, Muto, Takafumi, Yamakawa, Tomio, Ikeda, Kazutaka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Opioid addiction and the opioid overdose epidemic are becoming more serious, and the development of therapeutic agents is essential for the pharmacological treatment of substance use disorders. The κ-opioid receptor (KOP) is a member of the opioid receptor system that has been gaining attention as a promising molecular target for the treatment of numerous human disorders, including pain, depression, anxiety, and drug addiction. Here, we biologically and pharmacologically evaluated a novel azepane-derived ligand, NP-5497-KA, as a selective KOP agonist. NP-5497-KA had 1000-fold higher selectivity for the KOP over the μ-opioid receptor (MOP), which was higher than nalfurafine (KOP/MOP: 65-fold), and acted as a selective KOP full agonist in the 3′,5′-cyclic adenosine monophosphate assay. The oral administration of NP-5497-KA (1–10 mg/kg) dose-dependently suppressed morphine-induced conditioned place preference in C57BL/6 J mice, and its effects were comparable to an intraperitoneal injection of nalfurafine (1–10 μg/kg). Nalfurafine (10 μg/kg) significantly inhibited rotarod performance, whereas NP-5497-KA (10 mg/kg) exerted no effect on rotarod performance. These results indicate that NP-5497-KA may be a novel option for the treatment of opioid use disorder with fewer side effects.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-45584-4