Loading…
Evaluating the potency of Sulawesi propolis compounds as ACE-2 inhibitors through molecular docking for COVID-19 drug discovery preliminary study
Coronavirus disease (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Up to date, there has been no specific cure to treat the disease. Indonesia is one of the countries that is still fighting to control virus transmission. Yet, at the same time,...
Saved in:
Published in: | Journal of King Saud University. Science 2021-03, Vol.33 (2), p.101297-101297, Article 101297 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coronavirus disease (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Up to date, there has been no specific cure to treat the disease. Indonesia is one of the countries that is still fighting to control virus transmission. Yet, at the same time, Indonesia has a rich biodiversity of natural medicinal products that potentially become an alternative cure. Thus, this study examined the potency of a natural medicinal product, Sulawesi propolis compounds produced by Tetragonula sapiens, inhibiting angiotensin-converting activity enzyme-2 (ACE-2), a receptor of SARS-CoV-2 in the human body. In this study, molecular docking was done to analyze the docking scores as the representation of binding affinity and the interaction profiles of propolis compounds toward ACE-2. The results illustrated that by considering the docking score and the presence of interaction with targeted sites, five compounds, namely glyasperin A, broussoflavonol F, sulabiroins A, (2S)-5,7-dihydroxy-4′-methoxy-8-prenylflavanone and isorhamnetin are potential to inhibit the binding of ACE-2 and SARS-CoV-2, with the docking score of −10.8, −9.9, −9.5, −9.3 and −9.2 kcal/mol respectively. The docking scores are considered to be more favorable compared to MLN-4760 as a potent inhibitor. |
---|---|
ISSN: | 1018-3647 2213-686X |
DOI: | 10.1016/j.jksus.2020.101297 |