Loading…
Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing
With the advancement of light detection and ranging (LiDAR) technology, the mobile laser scanner (MLS) has been regarded as an important technology to collect geometric representations of the indoor environment. In particular, methods for detecting indoor objects from indoor point cloud data (PCD) c...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-01, Vol.13 (2), p.161 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333 |
container_end_page | |
container_issue | 2 |
container_start_page | 161 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 13 |
creator | Oh, Sangmin Lee, Dongmin Kim, Minju Kim, Taehoon Cho, Hunhee |
description | With the advancement of light detection and ranging (LiDAR) technology, the mobile laser scanner (MLS) has been regarded as an important technology to collect geometric representations of the indoor environment. In particular, methods for detecting indoor objects from indoor point cloud data (PCD) captured through MLS have thus far been developed based on the trajectory of MLS. However, the existing methods have a limitation on applying to an indoor environment where the building components made by concrete impede obtaining the information of trajectory. Thus, this study aims to propose a building component detection algorithm for MLS-based indoor PCD without trajectory using random sample consensus (RANSAC)-based region growth. The proposed algorithm used the RANSAC and region growing to overcome the low accuracy and uniformity of MLS caused by the movement of LiDAR. This study ensures over 90% precision, recall, and proper segmentation rate of building component detection by testing the algorithm using the indoor PCD. The result of the case study shows that the proposed algorithm opens the possibility of accurately detecting interior objects from indoor PCD without trajectory information of MLS. |
doi_str_mv | 10.3390/rs13020161 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4fd2efe80b8e43ccae2610b35da4d45a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4fd2efe80b8e43ccae2610b35da4d45a</doaj_id><sourcerecordid>oai_doaj_org_article_4fd2efe80b8e43ccae2610b35da4d45a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOHQv_gV9FqpJLmmbx63TORgq0z2Xa5KOjq0ZSYv435s5UY-D-7j7-MF9hNwwegeg6L0PDCinLGNnZMRpzlPBFT__py_JOIQtjQXAFBUjYqdDuzNtt0lKtz-4znZ9MrO91X3ruiT2ugu9H3Q_eGsSmCWLzjjnk1fXRme5c4MJyTocAavJ89ukTKcYonNlN0fA3LuPeLsmFw3ugh3_zCuyfnx4L5_S5ct8UU6WqQaAPgVRFBaVUgZQaiFrXcssr1leI88VL0BKWmRMMGRYGKUROJdK1TK-z0xEXJHFiWscbquDb_foPyuHbfW9cH5Toe9bvbOVaAy3jS1oXVgBWqPlGaM1SIPCCImRdXtiae9C8Lb55TFaHfOu_vKGLxo_cWs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing</title><source>Publicly Available Content Database</source><creator>Oh, Sangmin ; Lee, Dongmin ; Kim, Minju ; Kim, Taehoon ; Cho, Hunhee</creator><creatorcontrib>Oh, Sangmin ; Lee, Dongmin ; Kim, Minju ; Kim, Taehoon ; Cho, Hunhee</creatorcontrib><description>With the advancement of light detection and ranging (LiDAR) technology, the mobile laser scanner (MLS) has been regarded as an important technology to collect geometric representations of the indoor environment. In particular, methods for detecting indoor objects from indoor point cloud data (PCD) captured through MLS have thus far been developed based on the trajectory of MLS. However, the existing methods have a limitation on applying to an indoor environment where the building components made by concrete impede obtaining the information of trajectory. Thus, this study aims to propose a building component detection algorithm for MLS-based indoor PCD without trajectory using random sample consensus (RANSAC)-based region growth. The proposed algorithm used the RANSAC and region growing to overcome the low accuracy and uniformity of MLS caused by the movement of LiDAR. This study ensures over 90% precision, recall, and proper segmentation rate of building component detection by testing the algorithm using the indoor PCD. The result of the case study shows that the proposed algorithm opens the possibility of accurately detecting interior objects from indoor PCD without trajectory information of MLS.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs13020161</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>building component detection ; indoor point cloud ; mobile laser scanner ; random sample consensus ; region growing</subject><ispartof>Remote sensing (Basel, Switzerland), 2021-01, Vol.13 (2), p.161</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333</citedby><cites>FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333</cites><orcidid>0000-0002-3176-5327 ; 0000-0002-9507-1965 ; 0000-0001-7019-3117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Oh, Sangmin</creatorcontrib><creatorcontrib>Lee, Dongmin</creatorcontrib><creatorcontrib>Kim, Minju</creatorcontrib><creatorcontrib>Kim, Taehoon</creatorcontrib><creatorcontrib>Cho, Hunhee</creatorcontrib><title>Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing</title><title>Remote sensing (Basel, Switzerland)</title><description>With the advancement of light detection and ranging (LiDAR) technology, the mobile laser scanner (MLS) has been regarded as an important technology to collect geometric representations of the indoor environment. In particular, methods for detecting indoor objects from indoor point cloud data (PCD) captured through MLS have thus far been developed based on the trajectory of MLS. However, the existing methods have a limitation on applying to an indoor environment where the building components made by concrete impede obtaining the information of trajectory. Thus, this study aims to propose a building component detection algorithm for MLS-based indoor PCD without trajectory using random sample consensus (RANSAC)-based region growth. The proposed algorithm used the RANSAC and region growing to overcome the low accuracy and uniformity of MLS caused by the movement of LiDAR. This study ensures over 90% precision, recall, and proper segmentation rate of building component detection by testing the algorithm using the indoor PCD. The result of the case study shows that the proposed algorithm opens the possibility of accurately detecting interior objects from indoor PCD without trajectory information of MLS.</description><subject>building component detection</subject><subject>indoor point cloud</subject><subject>mobile laser scanner</subject><subject>random sample consensus</subject><subject>region growing</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkNFLwzAQxoMoOHQv_gV9FqpJLmmbx63TORgq0z2Xa5KOjq0ZSYv435s5UY-D-7j7-MF9hNwwegeg6L0PDCinLGNnZMRpzlPBFT__py_JOIQtjQXAFBUjYqdDuzNtt0lKtz-4znZ9MrO91X3ruiT2ugu9H3Q_eGsSmCWLzjjnk1fXRme5c4MJyTocAavJ89ukTKcYonNlN0fA3LuPeLsmFw3ugh3_zCuyfnx4L5_S5ct8UU6WqQaAPgVRFBaVUgZQaiFrXcssr1leI88VL0BKWmRMMGRYGKUROJdK1TK-z0xEXJHFiWscbquDb_foPyuHbfW9cH5Toe9bvbOVaAy3jS1oXVgBWqPlGaM1SIPCCImRdXtiae9C8Lb55TFaHfOu_vKGLxo_cWs</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Oh, Sangmin</creator><creator>Lee, Dongmin</creator><creator>Kim, Minju</creator><creator>Kim, Taehoon</creator><creator>Cho, Hunhee</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3176-5327</orcidid><orcidid>https://orcid.org/0000-0002-9507-1965</orcidid><orcidid>https://orcid.org/0000-0001-7019-3117</orcidid></search><sort><creationdate>20210101</creationdate><title>Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing</title><author>Oh, Sangmin ; Lee, Dongmin ; Kim, Minju ; Kim, Taehoon ; Cho, Hunhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>building component detection</topic><topic>indoor point cloud</topic><topic>mobile laser scanner</topic><topic>random sample consensus</topic><topic>region growing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Sangmin</creatorcontrib><creatorcontrib>Lee, Dongmin</creatorcontrib><creatorcontrib>Kim, Minju</creatorcontrib><creatorcontrib>Kim, Taehoon</creatorcontrib><creatorcontrib>Cho, Hunhee</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Sangmin</au><au>Lee, Dongmin</au><au>Kim, Minju</au><au>Kim, Taehoon</au><au>Cho, Hunhee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>13</volume><issue>2</issue><spage>161</spage><pages>161-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>With the advancement of light detection and ranging (LiDAR) technology, the mobile laser scanner (MLS) has been regarded as an important technology to collect geometric representations of the indoor environment. In particular, methods for detecting indoor objects from indoor point cloud data (PCD) captured through MLS have thus far been developed based on the trajectory of MLS. However, the existing methods have a limitation on applying to an indoor environment where the building components made by concrete impede obtaining the information of trajectory. Thus, this study aims to propose a building component detection algorithm for MLS-based indoor PCD without trajectory using random sample consensus (RANSAC)-based region growth. The proposed algorithm used the RANSAC and region growing to overcome the low accuracy and uniformity of MLS caused by the movement of LiDAR. This study ensures over 90% precision, recall, and proper segmentation rate of building component detection by testing the algorithm using the indoor PCD. The result of the case study shows that the proposed algorithm opens the possibility of accurately detecting interior objects from indoor PCD without trajectory information of MLS.</abstract><pub>MDPI AG</pub><doi>10.3390/rs13020161</doi><orcidid>https://orcid.org/0000-0002-3176-5327</orcidid><orcidid>https://orcid.org/0000-0002-9507-1965</orcidid><orcidid>https://orcid.org/0000-0001-7019-3117</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2021-01, Vol.13 (2), p.161 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4fd2efe80b8e43ccae2610b35da4d45a |
source | Publicly Available Content Database |
subjects | building component detection indoor point cloud mobile laser scanner random sample consensus region growing |
title | Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20Component%20Detection%20on%20Unstructured%203D%20Indoor%20Point%20Clouds%20Using%20RANSAC-Based%20Region%20Growing&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Oh,%20Sangmin&rft.date=2021-01-01&rft.volume=13&rft.issue=2&rft.spage=161&rft.pages=161-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs13020161&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_4fd2efe80b8e43ccae2610b35da4d45a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |