Loading…

Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing

With the advancement of light detection and ranging (LiDAR) technology, the mobile laser scanner (MLS) has been regarded as an important technology to collect geometric representations of the indoor environment. In particular, methods for detecting indoor objects from indoor point cloud data (PCD) c...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2021-01, Vol.13 (2), p.161
Main Authors: Oh, Sangmin, Lee, Dongmin, Kim, Minju, Kim, Taehoon, Cho, Hunhee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333
cites cdi_FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333
container_end_page
container_issue 2
container_start_page 161
container_title Remote sensing (Basel, Switzerland)
container_volume 13
creator Oh, Sangmin
Lee, Dongmin
Kim, Minju
Kim, Taehoon
Cho, Hunhee
description With the advancement of light detection and ranging (LiDAR) technology, the mobile laser scanner (MLS) has been regarded as an important technology to collect geometric representations of the indoor environment. In particular, methods for detecting indoor objects from indoor point cloud data (PCD) captured through MLS have thus far been developed based on the trajectory of MLS. However, the existing methods have a limitation on applying to an indoor environment where the building components made by concrete impede obtaining the information of trajectory. Thus, this study aims to propose a building component detection algorithm for MLS-based indoor PCD without trajectory using random sample consensus (RANSAC)-based region growth. The proposed algorithm used the RANSAC and region growing to overcome the low accuracy and uniformity of MLS caused by the movement of LiDAR. This study ensures over 90% precision, recall, and proper segmentation rate of building component detection by testing the algorithm using the indoor PCD. The result of the case study shows that the proposed algorithm opens the possibility of accurately detecting interior objects from indoor PCD without trajectory information of MLS.
doi_str_mv 10.3390/rs13020161
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4fd2efe80b8e43ccae2610b35da4d45a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4fd2efe80b8e43ccae2610b35da4d45a</doaj_id><sourcerecordid>oai_doaj_org_article_4fd2efe80b8e43ccae2610b35da4d45a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOHQv_gV9FqpJLmmbx63TORgq0z2Xa5KOjq0ZSYv435s5UY-D-7j7-MF9hNwwegeg6L0PDCinLGNnZMRpzlPBFT__py_JOIQtjQXAFBUjYqdDuzNtt0lKtz-4znZ9MrO91X3ruiT2ugu9H3Q_eGsSmCWLzjjnk1fXRme5c4MJyTocAavJ89ukTKcYonNlN0fA3LuPeLsmFw3ugh3_zCuyfnx4L5_S5ct8UU6WqQaAPgVRFBaVUgZQaiFrXcssr1leI88VL0BKWmRMMGRYGKUROJdK1TK-z0xEXJHFiWscbquDb_foPyuHbfW9cH5Toe9bvbOVaAy3jS1oXVgBWqPlGaM1SIPCCImRdXtiae9C8Lb55TFaHfOu_vKGLxo_cWs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing</title><source>Publicly Available Content Database</source><creator>Oh, Sangmin ; Lee, Dongmin ; Kim, Minju ; Kim, Taehoon ; Cho, Hunhee</creator><creatorcontrib>Oh, Sangmin ; Lee, Dongmin ; Kim, Minju ; Kim, Taehoon ; Cho, Hunhee</creatorcontrib><description>With the advancement of light detection and ranging (LiDAR) technology, the mobile laser scanner (MLS) has been regarded as an important technology to collect geometric representations of the indoor environment. In particular, methods for detecting indoor objects from indoor point cloud data (PCD) captured through MLS have thus far been developed based on the trajectory of MLS. However, the existing methods have a limitation on applying to an indoor environment where the building components made by concrete impede obtaining the information of trajectory. Thus, this study aims to propose a building component detection algorithm for MLS-based indoor PCD without trajectory using random sample consensus (RANSAC)-based region growth. The proposed algorithm used the RANSAC and region growing to overcome the low accuracy and uniformity of MLS caused by the movement of LiDAR. This study ensures over 90% precision, recall, and proper segmentation rate of building component detection by testing the algorithm using the indoor PCD. The result of the case study shows that the proposed algorithm opens the possibility of accurately detecting interior objects from indoor PCD without trajectory information of MLS.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs13020161</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>building component detection ; indoor point cloud ; mobile laser scanner ; random sample consensus ; region growing</subject><ispartof>Remote sensing (Basel, Switzerland), 2021-01, Vol.13 (2), p.161</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333</citedby><cites>FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333</cites><orcidid>0000-0002-3176-5327 ; 0000-0002-9507-1965 ; 0000-0001-7019-3117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Oh, Sangmin</creatorcontrib><creatorcontrib>Lee, Dongmin</creatorcontrib><creatorcontrib>Kim, Minju</creatorcontrib><creatorcontrib>Kim, Taehoon</creatorcontrib><creatorcontrib>Cho, Hunhee</creatorcontrib><title>Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing</title><title>Remote sensing (Basel, Switzerland)</title><description>With the advancement of light detection and ranging (LiDAR) technology, the mobile laser scanner (MLS) has been regarded as an important technology to collect geometric representations of the indoor environment. In particular, methods for detecting indoor objects from indoor point cloud data (PCD) captured through MLS have thus far been developed based on the trajectory of MLS. However, the existing methods have a limitation on applying to an indoor environment where the building components made by concrete impede obtaining the information of trajectory. Thus, this study aims to propose a building component detection algorithm for MLS-based indoor PCD without trajectory using random sample consensus (RANSAC)-based region growth. The proposed algorithm used the RANSAC and region growing to overcome the low accuracy and uniformity of MLS caused by the movement of LiDAR. This study ensures over 90% precision, recall, and proper segmentation rate of building component detection by testing the algorithm using the indoor PCD. The result of the case study shows that the proposed algorithm opens the possibility of accurately detecting interior objects from indoor PCD without trajectory information of MLS.</description><subject>building component detection</subject><subject>indoor point cloud</subject><subject>mobile laser scanner</subject><subject>random sample consensus</subject><subject>region growing</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkNFLwzAQxoMoOHQv_gV9FqpJLmmbx63TORgq0z2Xa5KOjq0ZSYv435s5UY-D-7j7-MF9hNwwegeg6L0PDCinLGNnZMRpzlPBFT__py_JOIQtjQXAFBUjYqdDuzNtt0lKtz-4znZ9MrO91X3ruiT2ugu9H3Q_eGsSmCWLzjjnk1fXRme5c4MJyTocAavJ89ukTKcYonNlN0fA3LuPeLsmFw3ugh3_zCuyfnx4L5_S5ct8UU6WqQaAPgVRFBaVUgZQaiFrXcssr1leI88VL0BKWmRMMGRYGKUROJdK1TK-z0xEXJHFiWscbquDb_foPyuHbfW9cH5Toe9bvbOVaAy3jS1oXVgBWqPlGaM1SIPCCImRdXtiae9C8Lb55TFaHfOu_vKGLxo_cWs</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Oh, Sangmin</creator><creator>Lee, Dongmin</creator><creator>Kim, Minju</creator><creator>Kim, Taehoon</creator><creator>Cho, Hunhee</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3176-5327</orcidid><orcidid>https://orcid.org/0000-0002-9507-1965</orcidid><orcidid>https://orcid.org/0000-0001-7019-3117</orcidid></search><sort><creationdate>20210101</creationdate><title>Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing</title><author>Oh, Sangmin ; Lee, Dongmin ; Kim, Minju ; Kim, Taehoon ; Cho, Hunhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>building component detection</topic><topic>indoor point cloud</topic><topic>mobile laser scanner</topic><topic>random sample consensus</topic><topic>region growing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Sangmin</creatorcontrib><creatorcontrib>Lee, Dongmin</creatorcontrib><creatorcontrib>Kim, Minju</creatorcontrib><creatorcontrib>Kim, Taehoon</creatorcontrib><creatorcontrib>Cho, Hunhee</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Sangmin</au><au>Lee, Dongmin</au><au>Kim, Minju</au><au>Kim, Taehoon</au><au>Cho, Hunhee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>13</volume><issue>2</issue><spage>161</spage><pages>161-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>With the advancement of light detection and ranging (LiDAR) technology, the mobile laser scanner (MLS) has been regarded as an important technology to collect geometric representations of the indoor environment. In particular, methods for detecting indoor objects from indoor point cloud data (PCD) captured through MLS have thus far been developed based on the trajectory of MLS. However, the existing methods have a limitation on applying to an indoor environment where the building components made by concrete impede obtaining the information of trajectory. Thus, this study aims to propose a building component detection algorithm for MLS-based indoor PCD without trajectory using random sample consensus (RANSAC)-based region growth. The proposed algorithm used the RANSAC and region growing to overcome the low accuracy and uniformity of MLS caused by the movement of LiDAR. This study ensures over 90% precision, recall, and proper segmentation rate of building component detection by testing the algorithm using the indoor PCD. The result of the case study shows that the proposed algorithm opens the possibility of accurately detecting interior objects from indoor PCD without trajectory information of MLS.</abstract><pub>MDPI AG</pub><doi>10.3390/rs13020161</doi><orcidid>https://orcid.org/0000-0002-3176-5327</orcidid><orcidid>https://orcid.org/0000-0002-9507-1965</orcidid><orcidid>https://orcid.org/0000-0001-7019-3117</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2021-01, Vol.13 (2), p.161
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4fd2efe80b8e43ccae2610b35da4d45a
source Publicly Available Content Database
subjects building component detection
indoor point cloud
mobile laser scanner
random sample consensus
region growing
title Building Component Detection on Unstructured 3D Indoor Point Clouds Using RANSAC-Based Region Growing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20Component%20Detection%20on%20Unstructured%203D%20Indoor%20Point%20Clouds%20Using%20RANSAC-Based%20Region%20Growing&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Oh,%20Sangmin&rft.date=2021-01-01&rft.volume=13&rft.issue=2&rft.spage=161&rft.pages=161-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs13020161&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_4fd2efe80b8e43ccae2610b35da4d45a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-3488ea999d3a5c45bcb567b17ba27928355086141a1a8d9ca322599b53391d333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true