Loading…

Clinical effectiveness and cost-effectiveness of neonatal screening for inborn errors of metabolism using tandem mass spectrometry: a systematic review

OBJECTIVESTo evaluate the clinical and cost-effectiveness of tandem mass spectrometry (MS)-based neonatal screening for inborn errors of metabolism (IEM). DATA SOURCESFourteen electronic bibliographic databases covering biomedical, science, economic and grey literature, the reference lists of releva...

Full description

Saved in:
Bibliographic Details
Published in:Health technology assessment (Winchester, England) England), 2004-03, Vol.8 (12), p.iii-iii
Main Authors: Pandor, A, Eastham, J, Beverley, C, Chilcott, J, Paisley, S
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:OBJECTIVESTo evaluate the clinical and cost-effectiveness of tandem mass spectrometry (MS)-based neonatal screening for inborn errors of metabolism (IEM). DATA SOURCESFourteen electronic bibliographic databases covering biomedical, science, economic and grey literature, the reference lists of relevant articles and abstracts of conference proceedings and 18 health services research-related resources. REVIEW METHODSThis review is an update of two previous HTA reports of neonatal screening for IEM. These reports have been updated by a systematic review of published research (between 1995 and January 2002) on neonatal screening of inherited metabolic disorders using tandem MS. This was supplemented by a search for economic literature and the application of a modelling exercise to investigate the economics of using tandem MS within a neonatal screening programme in the UK. RESULTSEvidence from the reviews of IEM found that the UK screening programme for phenylketonuria (PKU) was well established and there was universal agreement that neonatal screening for PKU was justified. Of the many other disorders that can be detected by tandem MS, the best candidate condition for a new screening programme was medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency. For many other IEM that can be detected by tandem MS, robust clinical evidence was limited. Cost-effectiveness analysis using economic modelling indicated that substituting the use of tandem MS for existing technologies for the screening of PKU alone could not be justified. However, results from the economic modelling indicate that the addition of screening for MCAD deficiency as part of a neonatal screening programme for PKU using tandem MS would be economically attractive. Using an operational range of 50,000-60,000 specimens per system per year, the mean incremental cost for PKU and MCAD deficiency screening combined using tandem MS from the model was -23,312 British pounds for each cohort of 100,000 neonates screened. This cost saving is associated with a mean incremental gain of 59 life-years. Additional economic modelling using the available evidence does not support including other inherited metabolic diseases within a neonatal screening programme at present. CONCLUSIONSThe evidence appears to support the introduction of tandem MS into a UK neonatal screening programme for PKU and MCAD deficiency combined. Tandem MS has the potential for simultaneous multi-disease screening using a single analytical
ISSN:1366-5278
2046-4924
1366-5278
DOI:10.3310/hta8120