Loading…

Rationality in pier geometry of Kintaikyo Bridge from viewpoint of river engineering

The Kintaikyo Bridge, with its elegant wooden arches, has a unique pier shape and continues to be loved by residents and visitors alike. Although this bridge is an active footbridge and an important landscape element along with the Nishikigawa River and its river beach, the rationality or irrational...

Full description

Saved in:
Bibliographic Details
Published in:Heritage science 2021-08, Vol.9 (1), p.1-13, Article 102
Main Author: Sato, Hirokazu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Kintaikyo Bridge, with its elegant wooden arches, has a unique pier shape and continues to be loved by residents and visitors alike. Although this bridge is an active footbridge and an important landscape element along with the Nishikigawa River and its river beach, the rationality or irrationality of the shape of its piers remains unknown. This paper is intended to clarify the river engineering characteristics of the piers for the first time by conducting 1/129 scale hydraulic model experiments. The shapes tested were a perfect spindle shape (which has been adopted as a common theory for many years) and a reconstructed current shape based on the spindle shape, and for comparison, an oval and a non-regular hexagon shape with the same width and area. The current shape, along with the spindle shape, suppressed the water level rise around the pier more than the others. As for the riverbed fluctuation, the current shape slightly increased the scour more than the others, but it also maximized the sedimentation around the scoured part. In other words, the current shape has the potential to facilitate the procurement of sediment for post-flood restoration. In addition, the current shape overwhelmingly reduced the statistical dispersion associated with the experiment, suggesting that it stabilizes the trend of riverbed fluctuation even during actual floods. Based on the results, the future conservation of the Kintaikyo Bridge was also discussed.
ISSN:2050-7445
2050-7445
DOI:10.1186/s40494-021-00576-3