Loading…

The Effect of Adding Different Levels of Curcumin and Its Nanoparticles to Extender on Post-Thaw Quality of Cryopreserved Rabbit Sperm

The cryopreservation process adversely affects sperm function and quality traits, causing some changes at biochemical and structural levels, due to mechanical, thermal, osmotic, and oxidative damage. Supplementation with curcumin nanoparticles could prevent and even revert this effect and could enha...

Full description

Saved in:
Bibliographic Details
Published in:Animals (Basel) 2020-09, Vol.10 (9), p.1508
Main Authors: Abdelnour, Sameh A, Hassan, Mahmoud A.E, Mohammed, Amer K, Alhimaidi, Ahmad R, Al-Gabri, Naif, Al-Khaldi, Khalid O, Swelum, Ayman A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cryopreservation process adversely affects sperm function and quality traits, causing some changes at biochemical and structural levels, due to mechanical, thermal, osmotic, and oxidative damage. Supplementation with curcumin nanoparticles could prevent and even revert this effect and could enhance the post/thawed sperm quality in the rabbit. The study amid to explore the effect of curcumin (CU) and curcumin nanoparticles (CUNPs) supplementation in semen extender on post/thawed rabbit sperm quality. Twelve fertile, healthy rabbit bucks were included, and the ejaculates were collected using artificial vaginas. Rabbit pooled semen was cryopreserved in tris-yolk fructose (TYF) extender without any supplement (control group) or extender supplemented with CU at levels of 0.5, 1 or 1.5 µg/mL (CU0.5, CU1.0, and CU1.5, respectively) or CUNPs at levels of 0.5, 1, 1.5 (CUNPs0.5, CUNPs1.0, and CUNPs1.5, respectively) and was packed in straws (0.25 mL) and stored in liquid nitrogen (−196 °C). Results revealed that CUNPs1.5 had a positive influence (p < 0.05) on post-thawing sperm progressive motility, viability, and membrane integrity as compared with the other groups. Percentages of dead sperm, abnormalities, early apoptotic, apoptotic, and necrotic sperm cells reduced (p < 0.05) in CUNPs1.5 as compared to other treatments. Using 1.5 µg/mL of CUNPs significantly improved total antioxidant capacity (TAC), GPx, while MDA and POC reduced (p < 0.05) in CU1.5 in comparison with other groups. SOD values were enhanced (p < 0.05) in CUNPs1.0 and CUNPs1.5 in relation with other treatments. Conclusively, the addition of curcumin and its nanoparticles to the extender can improve the post-thawed quality of rabbit sperm via redox signaling and reduce the apoptosis process.
ISSN:2076-2615
2076-2615
DOI:10.3390/ani10091508