Loading…

Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans

This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% ( ) nano-titanium dioxide. Irradiation was performed with a dental blue light in t...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2021-04, Vol.26 (9), p.2405
Main Authors: Kanpittaya, Kasama, Teerakapong, Aroon, Morales, Noppawan Phumala, Hormdee, Doosadee, Priprem, Aroonsri, Weera-Archakul, Wilawan, Damrongrungruang, Teerasak
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753
cites cdi_FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753
container_end_page
container_issue 9
container_start_page 2405
container_title Molecules (Basel, Switzerland)
container_volume 26
creator Kanpittaya, Kasama
Teerakapong, Aroon
Morales, Noppawan Phumala
Hormdee, Doosadee
Priprem, Aroonsri
Weera-Archakul, Wilawan
Damrongrungruang, Teerasak
description This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% ( ) nano-titanium dioxide. Irradiation was performed with a dental blue light in the 395-480 nm wavelength range, with a power density of 3200 mW/cm and yield of 72 J/cm . The production of ROS and hydroxyl radical was investigated using an electron paramagnetic resonance spectrometer for each individual photosensitizer or in photosensitizer combinations. Subsequently, a PrestoBlue toxicity test of the gingival fibroblast cells was performed at 6 and 24 h on the eight highest ROS-generating photosensitizers containing curcumin derivatives and erythrosine 220 µM. Finally, the antifungal ability of 22 test photosensitizers, (ATCC 10231), were cultured in biofilm form at 37 °C for 48 h, then the colonies were counted in colony-forming units (CFU/mL) via the drop plate technique, and then the log reduction was calculated. The results showed that at 48 h the test photosensitizers could simultaneously produce both ROS types. All test photosensitizers demonstrated no toxicity on the fibroblast cells. In total, 18 test photosensitizers were able to inhibit similarly to nystatin. Conclusively, 20 µM bisdemethoxy curcumin + 220 µM erythrosine + 10% ( ) nano-titanium dioxide exerted the highest inhibitory effect on .
doi_str_mv 10.3390/molecules26092405
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_504ed5a3ef544c67b63d96cd286c5ee8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_504ed5a3ef544c67b63d96cd286c5ee8</doaj_id><sourcerecordid>2530151479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753</originalsourceid><addsrcrecordid>eNplkU1v00AQhi0EoqXwA7ggS5xN9tvZCxJKQ4lUPg7hvBrvjpuN7N2wXkf1hd9eQ0rVitOMZuZ9ZkZvUbyl5APnmiz62KEdOxyYIpoJIp8V51QwUnEi9PNH-Vnxahj2hDAqqHxZnM1qqolS58XvTdj5xueYpnLdtmjzUMa2XKcp71IcfMDFakx27H0oLzH5I2R_xGHxDUKstj5D8GNfXvp46x1WX9F5yOjKH7uYo5sC9N6W2x0mOExlDOUKgvMOSugabyEMr4sXLXQDvrmPF8XPz-vt6kt1_f1qs_p0XVmhea4ErZulaGmjHKVK6gaddk7UjWZsqcBCS2pOhQCJFpjSnKJYcqwRGXWqlvyi2Jy4LsLeHJLvIU0mgjd_CzHdGEjZ2w6NJAKdBI6tFMKqulHcaWXdvMhKxOXM-nhiHcamR2cx5ATdE-jTTvA7cxOPZkkZE7WeAe_vASn-GnHIZh_HFOb_DZOcUElPU_Q0ZWcfhoTtwwZKzB_7zX_2z5p3j097UPzzm98BXoSw4Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530151479</pqid></control><display><type>article</type><title>Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Kanpittaya, Kasama ; Teerakapong, Aroon ; Morales, Noppawan Phumala ; Hormdee, Doosadee ; Priprem, Aroonsri ; Weera-Archakul, Wilawan ; Damrongrungruang, Teerasak</creator><creatorcontrib>Kanpittaya, Kasama ; Teerakapong, Aroon ; Morales, Noppawan Phumala ; Hormdee, Doosadee ; Priprem, Aroonsri ; Weera-Archakul, Wilawan ; Damrongrungruang, Teerasak</creatorcontrib><description>This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% ( ) nano-titanium dioxide. Irradiation was performed with a dental blue light in the 395-480 nm wavelength range, with a power density of 3200 mW/cm and yield of 72 J/cm . The production of ROS and hydroxyl radical was investigated using an electron paramagnetic resonance spectrometer for each individual photosensitizer or in photosensitizer combinations. Subsequently, a PrestoBlue toxicity test of the gingival fibroblast cells was performed at 6 and 24 h on the eight highest ROS-generating photosensitizers containing curcumin derivatives and erythrosine 220 µM. Finally, the antifungal ability of 22 test photosensitizers, (ATCC 10231), were cultured in biofilm form at 37 °C for 48 h, then the colonies were counted in colony-forming units (CFU/mL) via the drop plate technique, and then the log reduction was calculated. The results showed that at 48 h the test photosensitizers could simultaneously produce both ROS types. All test photosensitizers demonstrated no toxicity on the fibroblast cells. In total, 18 test photosensitizers were able to inhibit similarly to nystatin. Conclusively, 20 µM bisdemethoxy curcumin + 220 µM erythrosine + 10% ( ) nano-titanium dioxide exerted the highest inhibitory effect on .</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules26092405</identifier><identifier>PMID: 33919066</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Antifungal Agents - chemistry ; Antifungal Agents - pharmacology ; Antioxidants ; Antioxidants - chemistry ; Antioxidants - pharmacology ; Binding sites ; biofilm ; Biofilms ; Biofilms - drug effects ; Candida albicans ; Candida albicans - drug effects ; Colonies ; Composite materials ; Curcumin ; Curcumin - chemistry ; Curcumin - pharmacology ; curcumin derivatives ; Disinfection &amp; disinfectants ; Drug resistance ; Electron paramagnetic resonance ; Electron spin resonance ; Electron Spin Resonance Spectroscopy ; erythrosine ; Erythrosine - chemistry ; Fibroblasts - metabolism ; Free radicals ; Fungicides ; Gingiva - cytology ; Hydrogen bonds ; Hydroxyl radicals ; Infections ; Irradiation ; Microorganisms ; Nystatin ; Photochemotherapy ; Photodynamic therapy ; Photosensitizing Agents - chemistry ; Photosensitizing Agents - pharmacology ; Reactive Oxygen Species - metabolism ; Titanium ; Titanium - chemistry ; Titanium dioxide ; Toxicity ; Toxicity testing</subject><ispartof>Molecules (Basel, Switzerland), 2021-04, Vol.26 (9), p.2405</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753</citedby><cites>FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753</cites><orcidid>0000-0002-1337-1164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2530151479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2530151479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33919066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanpittaya, Kasama</creatorcontrib><creatorcontrib>Teerakapong, Aroon</creatorcontrib><creatorcontrib>Morales, Noppawan Phumala</creatorcontrib><creatorcontrib>Hormdee, Doosadee</creatorcontrib><creatorcontrib>Priprem, Aroonsri</creatorcontrib><creatorcontrib>Weera-Archakul, Wilawan</creatorcontrib><creatorcontrib>Damrongrungruang, Teerasak</creatorcontrib><title>Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% ( ) nano-titanium dioxide. Irradiation was performed with a dental blue light in the 395-480 nm wavelength range, with a power density of 3200 mW/cm and yield of 72 J/cm . The production of ROS and hydroxyl radical was investigated using an electron paramagnetic resonance spectrometer for each individual photosensitizer or in photosensitizer combinations. Subsequently, a PrestoBlue toxicity test of the gingival fibroblast cells was performed at 6 and 24 h on the eight highest ROS-generating photosensitizers containing curcumin derivatives and erythrosine 220 µM. Finally, the antifungal ability of 22 test photosensitizers, (ATCC 10231), were cultured in biofilm form at 37 °C for 48 h, then the colonies were counted in colony-forming units (CFU/mL) via the drop plate technique, and then the log reduction was calculated. The results showed that at 48 h the test photosensitizers could simultaneously produce both ROS types. All test photosensitizers demonstrated no toxicity on the fibroblast cells. In total, 18 test photosensitizers were able to inhibit similarly to nystatin. Conclusively, 20 µM bisdemethoxy curcumin + 220 µM erythrosine + 10% ( ) nano-titanium dioxide exerted the highest inhibitory effect on .</description><subject>Antifungal Agents - chemistry</subject><subject>Antifungal Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - pharmacology</subject><subject>Binding sites</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Candida albicans</subject><subject>Candida albicans - drug effects</subject><subject>Colonies</subject><subject>Composite materials</subject><subject>Curcumin</subject><subject>Curcumin - chemistry</subject><subject>Curcumin - pharmacology</subject><subject>curcumin derivatives</subject><subject>Disinfection &amp; disinfectants</subject><subject>Drug resistance</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin resonance</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>erythrosine</subject><subject>Erythrosine - chemistry</subject><subject>Fibroblasts - metabolism</subject><subject>Free radicals</subject><subject>Fungicides</subject><subject>Gingiva - cytology</subject><subject>Hydrogen bonds</subject><subject>Hydroxyl radicals</subject><subject>Infections</subject><subject>Irradiation</subject><subject>Microorganisms</subject><subject>Nystatin</subject><subject>Photochemotherapy</subject><subject>Photodynamic therapy</subject><subject>Photosensitizing Agents - chemistry</subject><subject>Photosensitizing Agents - pharmacology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium dioxide</subject><subject>Toxicity</subject><subject>Toxicity testing</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkU1v00AQhi0EoqXwA7ggS5xN9tvZCxJKQ4lUPg7hvBrvjpuN7N2wXkf1hd9eQ0rVitOMZuZ9ZkZvUbyl5APnmiz62KEdOxyYIpoJIp8V51QwUnEi9PNH-Vnxahj2hDAqqHxZnM1qqolS58XvTdj5xueYpnLdtmjzUMa2XKcp71IcfMDFakx27H0oLzH5I2R_xGHxDUKstj5D8GNfXvp46x1WX9F5yOjKH7uYo5sC9N6W2x0mOExlDOUKgvMOSugabyEMr4sXLXQDvrmPF8XPz-vt6kt1_f1qs_p0XVmhea4ErZulaGmjHKVK6gaddk7UjWZsqcBCS2pOhQCJFpjSnKJYcqwRGXWqlvyi2Jy4LsLeHJLvIU0mgjd_CzHdGEjZ2w6NJAKdBI6tFMKqulHcaWXdvMhKxOXM-nhiHcamR2cx5ATdE-jTTvA7cxOPZkkZE7WeAe_vASn-GnHIZh_HFOb_DZOcUElPU_Q0ZWcfhoTtwwZKzB_7zX_2z5p3j097UPzzm98BXoSw4Q</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Kanpittaya, Kasama</creator><creator>Teerakapong, Aroon</creator><creator>Morales, Noppawan Phumala</creator><creator>Hormdee, Doosadee</creator><creator>Priprem, Aroonsri</creator><creator>Weera-Archakul, Wilawan</creator><creator>Damrongrungruang, Teerasak</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1337-1164</orcidid></search><sort><creationdate>20210421</creationdate><title>Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans</title><author>Kanpittaya, Kasama ; Teerakapong, Aroon ; Morales, Noppawan Phumala ; Hormdee, Doosadee ; Priprem, Aroonsri ; Weera-Archakul, Wilawan ; Damrongrungruang, Teerasak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antifungal Agents - chemistry</topic><topic>Antifungal Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - pharmacology</topic><topic>Binding sites</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Candida albicans</topic><topic>Candida albicans - drug effects</topic><topic>Colonies</topic><topic>Composite materials</topic><topic>Curcumin</topic><topic>Curcumin - chemistry</topic><topic>Curcumin - pharmacology</topic><topic>curcumin derivatives</topic><topic>Disinfection &amp; disinfectants</topic><topic>Drug resistance</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin resonance</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>erythrosine</topic><topic>Erythrosine - chemistry</topic><topic>Fibroblasts - metabolism</topic><topic>Free radicals</topic><topic>Fungicides</topic><topic>Gingiva - cytology</topic><topic>Hydrogen bonds</topic><topic>Hydroxyl radicals</topic><topic>Infections</topic><topic>Irradiation</topic><topic>Microorganisms</topic><topic>Nystatin</topic><topic>Photochemotherapy</topic><topic>Photodynamic therapy</topic><topic>Photosensitizing Agents - chemistry</topic><topic>Photosensitizing Agents - pharmacology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium dioxide</topic><topic>Toxicity</topic><topic>Toxicity testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanpittaya, Kasama</creatorcontrib><creatorcontrib>Teerakapong, Aroon</creatorcontrib><creatorcontrib>Morales, Noppawan Phumala</creatorcontrib><creatorcontrib>Hormdee, Doosadee</creatorcontrib><creatorcontrib>Priprem, Aroonsri</creatorcontrib><creatorcontrib>Weera-Archakul, Wilawan</creatorcontrib><creatorcontrib>Damrongrungruang, Teerasak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanpittaya, Kasama</au><au>Teerakapong, Aroon</au><au>Morales, Noppawan Phumala</au><au>Hormdee, Doosadee</au><au>Priprem, Aroonsri</au><au>Weera-Archakul, Wilawan</au><au>Damrongrungruang, Teerasak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2021-04-21</date><risdate>2021</risdate><volume>26</volume><issue>9</issue><spage>2405</spage><pages>2405-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% ( ) nano-titanium dioxide. Irradiation was performed with a dental blue light in the 395-480 nm wavelength range, with a power density of 3200 mW/cm and yield of 72 J/cm . The production of ROS and hydroxyl radical was investigated using an electron paramagnetic resonance spectrometer for each individual photosensitizer or in photosensitizer combinations. Subsequently, a PrestoBlue toxicity test of the gingival fibroblast cells was performed at 6 and 24 h on the eight highest ROS-generating photosensitizers containing curcumin derivatives and erythrosine 220 µM. Finally, the antifungal ability of 22 test photosensitizers, (ATCC 10231), were cultured in biofilm form at 37 °C for 48 h, then the colonies were counted in colony-forming units (CFU/mL) via the drop plate technique, and then the log reduction was calculated. The results showed that at 48 h the test photosensitizers could simultaneously produce both ROS types. All test photosensitizers demonstrated no toxicity on the fibroblast cells. In total, 18 test photosensitizers were able to inhibit similarly to nystatin. Conclusively, 20 µM bisdemethoxy curcumin + 220 µM erythrosine + 10% ( ) nano-titanium dioxide exerted the highest inhibitory effect on .</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33919066</pmid><doi>10.3390/molecules26092405</doi><orcidid>https://orcid.org/0000-0002-1337-1164</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2021-04, Vol.26 (9), p.2405
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_504ed5a3ef544c67b63d96cd286c5ee8
source PMC (PubMed Central); Publicly Available Content (ProQuest)
subjects Antifungal Agents - chemistry
Antifungal Agents - pharmacology
Antioxidants
Antioxidants - chemistry
Antioxidants - pharmacology
Binding sites
biofilm
Biofilms
Biofilms - drug effects
Candida albicans
Candida albicans - drug effects
Colonies
Composite materials
Curcumin
Curcumin - chemistry
Curcumin - pharmacology
curcumin derivatives
Disinfection & disinfectants
Drug resistance
Electron paramagnetic resonance
Electron spin resonance
Electron Spin Resonance Spectroscopy
erythrosine
Erythrosine - chemistry
Fibroblasts - metabolism
Free radicals
Fungicides
Gingiva - cytology
Hydrogen bonds
Hydroxyl radicals
Infections
Irradiation
Microorganisms
Nystatin
Photochemotherapy
Photodynamic therapy
Photosensitizing Agents - chemistry
Photosensitizing Agents - pharmacology
Reactive Oxygen Species - metabolism
Titanium
Titanium - chemistry
Titanium dioxide
Toxicity
Toxicity testing
title Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibitory%20Effects%20of%20Erythrosine/Curcumin%20Derivatives/Nano-Titanium%20Dioxide-Mediated%20Photodynamic%20Therapy%20on%20Candida%20albicans&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Kanpittaya,%20Kasama&rft.date=2021-04-21&rft.volume=26&rft.issue=9&rft.spage=2405&rft.pages=2405-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules26092405&rft_dat=%3Cproquest_doaj_%3E2530151479%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2530151479&rft_id=info:pmid/33919066&rfr_iscdi=true