Loading…
Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans
This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% ( ) nano-titanium dioxide. Irradiation was performed with a dental blue light in t...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2021-04, Vol.26 (9), p.2405 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753 |
---|---|
cites | cdi_FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753 |
container_end_page | |
container_issue | 9 |
container_start_page | 2405 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 26 |
creator | Kanpittaya, Kasama Teerakapong, Aroon Morales, Noppawan Phumala Hormdee, Doosadee Priprem, Aroonsri Weera-Archakul, Wilawan Damrongrungruang, Teerasak |
description | This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% (
) nano-titanium dioxide. Irradiation was performed with a dental blue light in the 395-480 nm wavelength range, with a power density of 3200 mW/cm
and yield of 72 J/cm
. The production of ROS and hydroxyl radical was investigated using an electron paramagnetic resonance spectrometer for each individual photosensitizer or in photosensitizer combinations. Subsequently, a PrestoBlue
toxicity test of the gingival fibroblast cells was performed at 6 and 24 h on the eight highest ROS-generating photosensitizers containing curcumin derivatives and erythrosine 220 µM. Finally, the antifungal ability of 22 test photosensitizers,
(ATCC 10231), were cultured in biofilm form at 37 °C for 48 h, then the colonies were counted in colony-forming units (CFU/mL) via the drop plate technique, and then the log reduction was calculated. The results showed that at 48 h the test photosensitizers could simultaneously produce both ROS types. All test photosensitizers demonstrated no toxicity on the fibroblast cells. In total, 18 test photosensitizers were able to inhibit
similarly to nystatin. Conclusively, 20 µM bisdemethoxy curcumin + 220 µM erythrosine + 10% (
) nano-titanium dioxide exerted the highest inhibitory effect on
. |
doi_str_mv | 10.3390/molecules26092405 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_504ed5a3ef544c67b63d96cd286c5ee8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_504ed5a3ef544c67b63d96cd286c5ee8</doaj_id><sourcerecordid>2530151479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753</originalsourceid><addsrcrecordid>eNplkU1v00AQhi0EoqXwA7ggS5xN9tvZCxJKQ4lUPg7hvBrvjpuN7N2wXkf1hd9eQ0rVitOMZuZ9ZkZvUbyl5APnmiz62KEdOxyYIpoJIp8V51QwUnEi9PNH-Vnxahj2hDAqqHxZnM1qqolS58XvTdj5xueYpnLdtmjzUMa2XKcp71IcfMDFakx27H0oLzH5I2R_xGHxDUKstj5D8GNfXvp46x1WX9F5yOjKH7uYo5sC9N6W2x0mOExlDOUKgvMOSugabyEMr4sXLXQDvrmPF8XPz-vt6kt1_f1qs_p0XVmhea4ErZulaGmjHKVK6gaddk7UjWZsqcBCS2pOhQCJFpjSnKJYcqwRGXWqlvyi2Jy4LsLeHJLvIU0mgjd_CzHdGEjZ2w6NJAKdBI6tFMKqulHcaWXdvMhKxOXM-nhiHcamR2cx5ATdE-jTTvA7cxOPZkkZE7WeAe_vASn-GnHIZh_HFOb_DZOcUElPU_Q0ZWcfhoTtwwZKzB_7zX_2z5p3j097UPzzm98BXoSw4Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530151479</pqid></control><display><type>article</type><title>Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Kanpittaya, Kasama ; Teerakapong, Aroon ; Morales, Noppawan Phumala ; Hormdee, Doosadee ; Priprem, Aroonsri ; Weera-Archakul, Wilawan ; Damrongrungruang, Teerasak</creator><creatorcontrib>Kanpittaya, Kasama ; Teerakapong, Aroon ; Morales, Noppawan Phumala ; Hormdee, Doosadee ; Priprem, Aroonsri ; Weera-Archakul, Wilawan ; Damrongrungruang, Teerasak</creatorcontrib><description>This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% (
) nano-titanium dioxide. Irradiation was performed with a dental blue light in the 395-480 nm wavelength range, with a power density of 3200 mW/cm
and yield of 72 J/cm
. The production of ROS and hydroxyl radical was investigated using an electron paramagnetic resonance spectrometer for each individual photosensitizer or in photosensitizer combinations. Subsequently, a PrestoBlue
toxicity test of the gingival fibroblast cells was performed at 6 and 24 h on the eight highest ROS-generating photosensitizers containing curcumin derivatives and erythrosine 220 µM. Finally, the antifungal ability of 22 test photosensitizers,
(ATCC 10231), were cultured in biofilm form at 37 °C for 48 h, then the colonies were counted in colony-forming units (CFU/mL) via the drop plate technique, and then the log reduction was calculated. The results showed that at 48 h the test photosensitizers could simultaneously produce both ROS types. All test photosensitizers demonstrated no toxicity on the fibroblast cells. In total, 18 test photosensitizers were able to inhibit
similarly to nystatin. Conclusively, 20 µM bisdemethoxy curcumin + 220 µM erythrosine + 10% (
) nano-titanium dioxide exerted the highest inhibitory effect on
.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules26092405</identifier><identifier>PMID: 33919066</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Antifungal Agents - chemistry ; Antifungal Agents - pharmacology ; Antioxidants ; Antioxidants - chemistry ; Antioxidants - pharmacology ; Binding sites ; biofilm ; Biofilms ; Biofilms - drug effects ; Candida albicans ; Candida albicans - drug effects ; Colonies ; Composite materials ; Curcumin ; Curcumin - chemistry ; Curcumin - pharmacology ; curcumin derivatives ; Disinfection & disinfectants ; Drug resistance ; Electron paramagnetic resonance ; Electron spin resonance ; Electron Spin Resonance Spectroscopy ; erythrosine ; Erythrosine - chemistry ; Fibroblasts - metabolism ; Free radicals ; Fungicides ; Gingiva - cytology ; Hydrogen bonds ; Hydroxyl radicals ; Infections ; Irradiation ; Microorganisms ; Nystatin ; Photochemotherapy ; Photodynamic therapy ; Photosensitizing Agents - chemistry ; Photosensitizing Agents - pharmacology ; Reactive Oxygen Species - metabolism ; Titanium ; Titanium - chemistry ; Titanium dioxide ; Toxicity ; Toxicity testing</subject><ispartof>Molecules (Basel, Switzerland), 2021-04, Vol.26 (9), p.2405</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753</citedby><cites>FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753</cites><orcidid>0000-0002-1337-1164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2530151479/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2530151479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33919066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanpittaya, Kasama</creatorcontrib><creatorcontrib>Teerakapong, Aroon</creatorcontrib><creatorcontrib>Morales, Noppawan Phumala</creatorcontrib><creatorcontrib>Hormdee, Doosadee</creatorcontrib><creatorcontrib>Priprem, Aroonsri</creatorcontrib><creatorcontrib>Weera-Archakul, Wilawan</creatorcontrib><creatorcontrib>Damrongrungruang, Teerasak</creatorcontrib><title>Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% (
) nano-titanium dioxide. Irradiation was performed with a dental blue light in the 395-480 nm wavelength range, with a power density of 3200 mW/cm
and yield of 72 J/cm
. The production of ROS and hydroxyl radical was investigated using an electron paramagnetic resonance spectrometer for each individual photosensitizer or in photosensitizer combinations. Subsequently, a PrestoBlue
toxicity test of the gingival fibroblast cells was performed at 6 and 24 h on the eight highest ROS-generating photosensitizers containing curcumin derivatives and erythrosine 220 µM. Finally, the antifungal ability of 22 test photosensitizers,
(ATCC 10231), were cultured in biofilm form at 37 °C for 48 h, then the colonies were counted in colony-forming units (CFU/mL) via the drop plate technique, and then the log reduction was calculated. The results showed that at 48 h the test photosensitizers could simultaneously produce both ROS types. All test photosensitizers demonstrated no toxicity on the fibroblast cells. In total, 18 test photosensitizers were able to inhibit
similarly to nystatin. Conclusively, 20 µM bisdemethoxy curcumin + 220 µM erythrosine + 10% (
) nano-titanium dioxide exerted the highest inhibitory effect on
.</description><subject>Antifungal Agents - chemistry</subject><subject>Antifungal Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Antioxidants - chemistry</subject><subject>Antioxidants - pharmacology</subject><subject>Binding sites</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Candida albicans</subject><subject>Candida albicans - drug effects</subject><subject>Colonies</subject><subject>Composite materials</subject><subject>Curcumin</subject><subject>Curcumin - chemistry</subject><subject>Curcumin - pharmacology</subject><subject>curcumin derivatives</subject><subject>Disinfection & disinfectants</subject><subject>Drug resistance</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin resonance</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>erythrosine</subject><subject>Erythrosine - chemistry</subject><subject>Fibroblasts - metabolism</subject><subject>Free radicals</subject><subject>Fungicides</subject><subject>Gingiva - cytology</subject><subject>Hydrogen bonds</subject><subject>Hydroxyl radicals</subject><subject>Infections</subject><subject>Irradiation</subject><subject>Microorganisms</subject><subject>Nystatin</subject><subject>Photochemotherapy</subject><subject>Photodynamic therapy</subject><subject>Photosensitizing Agents - chemistry</subject><subject>Photosensitizing Agents - pharmacology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium dioxide</subject><subject>Toxicity</subject><subject>Toxicity testing</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkU1v00AQhi0EoqXwA7ggS5xN9tvZCxJKQ4lUPg7hvBrvjpuN7N2wXkf1hd9eQ0rVitOMZuZ9ZkZvUbyl5APnmiz62KEdOxyYIpoJIp8V51QwUnEi9PNH-Vnxahj2hDAqqHxZnM1qqolS58XvTdj5xueYpnLdtmjzUMa2XKcp71IcfMDFakx27H0oLzH5I2R_xGHxDUKstj5D8GNfXvp46x1WX9F5yOjKH7uYo5sC9N6W2x0mOExlDOUKgvMOSugabyEMr4sXLXQDvrmPF8XPz-vt6kt1_f1qs_p0XVmhea4ErZulaGmjHKVK6gaddk7UjWZsqcBCS2pOhQCJFpjSnKJYcqwRGXWqlvyi2Jy4LsLeHJLvIU0mgjd_CzHdGEjZ2w6NJAKdBI6tFMKqulHcaWXdvMhKxOXM-nhiHcamR2cx5ATdE-jTTvA7cxOPZkkZE7WeAe_vASn-GnHIZh_HFOb_DZOcUElPU_Q0ZWcfhoTtwwZKzB_7zX_2z5p3j097UPzzm98BXoSw4Q</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Kanpittaya, Kasama</creator><creator>Teerakapong, Aroon</creator><creator>Morales, Noppawan Phumala</creator><creator>Hormdee, Doosadee</creator><creator>Priprem, Aroonsri</creator><creator>Weera-Archakul, Wilawan</creator><creator>Damrongrungruang, Teerasak</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1337-1164</orcidid></search><sort><creationdate>20210421</creationdate><title>Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans</title><author>Kanpittaya, Kasama ; Teerakapong, Aroon ; Morales, Noppawan Phumala ; Hormdee, Doosadee ; Priprem, Aroonsri ; Weera-Archakul, Wilawan ; Damrongrungruang, Teerasak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antifungal Agents - chemistry</topic><topic>Antifungal Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Antioxidants - chemistry</topic><topic>Antioxidants - pharmacology</topic><topic>Binding sites</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Candida albicans</topic><topic>Candida albicans - drug effects</topic><topic>Colonies</topic><topic>Composite materials</topic><topic>Curcumin</topic><topic>Curcumin - chemistry</topic><topic>Curcumin - pharmacology</topic><topic>curcumin derivatives</topic><topic>Disinfection & disinfectants</topic><topic>Drug resistance</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin resonance</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>erythrosine</topic><topic>Erythrosine - chemistry</topic><topic>Fibroblasts - metabolism</topic><topic>Free radicals</topic><topic>Fungicides</topic><topic>Gingiva - cytology</topic><topic>Hydrogen bonds</topic><topic>Hydroxyl radicals</topic><topic>Infections</topic><topic>Irradiation</topic><topic>Microorganisms</topic><topic>Nystatin</topic><topic>Photochemotherapy</topic><topic>Photodynamic therapy</topic><topic>Photosensitizing Agents - chemistry</topic><topic>Photosensitizing Agents - pharmacology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium dioxide</topic><topic>Toxicity</topic><topic>Toxicity testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanpittaya, Kasama</creatorcontrib><creatorcontrib>Teerakapong, Aroon</creatorcontrib><creatorcontrib>Morales, Noppawan Phumala</creatorcontrib><creatorcontrib>Hormdee, Doosadee</creatorcontrib><creatorcontrib>Priprem, Aroonsri</creatorcontrib><creatorcontrib>Weera-Archakul, Wilawan</creatorcontrib><creatorcontrib>Damrongrungruang, Teerasak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanpittaya, Kasama</au><au>Teerakapong, Aroon</au><au>Morales, Noppawan Phumala</au><au>Hormdee, Doosadee</au><au>Priprem, Aroonsri</au><au>Weera-Archakul, Wilawan</au><au>Damrongrungruang, Teerasak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2021-04-21</date><risdate>2021</risdate><volume>26</volume><issue>9</issue><spage>2405</spage><pages>2405-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>This study focuses on the role of photosensitizers in photodynamic therapy. The photosensitizers were prepared in combinations of 110/220 µM erythrosine and/or 10/20 µM demethoxy/bisdemethoxy curcumin with/without 10% (
) nano-titanium dioxide. Irradiation was performed with a dental blue light in the 395-480 nm wavelength range, with a power density of 3200 mW/cm
and yield of 72 J/cm
. The production of ROS and hydroxyl radical was investigated using an electron paramagnetic resonance spectrometer for each individual photosensitizer or in photosensitizer combinations. Subsequently, a PrestoBlue
toxicity test of the gingival fibroblast cells was performed at 6 and 24 h on the eight highest ROS-generating photosensitizers containing curcumin derivatives and erythrosine 220 µM. Finally, the antifungal ability of 22 test photosensitizers,
(ATCC 10231), were cultured in biofilm form at 37 °C for 48 h, then the colonies were counted in colony-forming units (CFU/mL) via the drop plate technique, and then the log reduction was calculated. The results showed that at 48 h the test photosensitizers could simultaneously produce both ROS types. All test photosensitizers demonstrated no toxicity on the fibroblast cells. In total, 18 test photosensitizers were able to inhibit
similarly to nystatin. Conclusively, 20 µM bisdemethoxy curcumin + 220 µM erythrosine + 10% (
) nano-titanium dioxide exerted the highest inhibitory effect on
.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33919066</pmid><doi>10.3390/molecules26092405</doi><orcidid>https://orcid.org/0000-0002-1337-1164</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2021-04, Vol.26 (9), p.2405 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_504ed5a3ef544c67b63d96cd286c5ee8 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | Antifungal Agents - chemistry Antifungal Agents - pharmacology Antioxidants Antioxidants - chemistry Antioxidants - pharmacology Binding sites biofilm Biofilms Biofilms - drug effects Candida albicans Candida albicans - drug effects Colonies Composite materials Curcumin Curcumin - chemistry Curcumin - pharmacology curcumin derivatives Disinfection & disinfectants Drug resistance Electron paramagnetic resonance Electron spin resonance Electron Spin Resonance Spectroscopy erythrosine Erythrosine - chemistry Fibroblasts - metabolism Free radicals Fungicides Gingiva - cytology Hydrogen bonds Hydroxyl radicals Infections Irradiation Microorganisms Nystatin Photochemotherapy Photodynamic therapy Photosensitizing Agents - chemistry Photosensitizing Agents - pharmacology Reactive Oxygen Species - metabolism Titanium Titanium - chemistry Titanium dioxide Toxicity Toxicity testing |
title | Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibitory%20Effects%20of%20Erythrosine/Curcumin%20Derivatives/Nano-Titanium%20Dioxide-Mediated%20Photodynamic%20Therapy%20on%20Candida%20albicans&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Kanpittaya,%20Kasama&rft.date=2021-04-21&rft.volume=26&rft.issue=9&rft.spage=2405&rft.pages=2405-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules26092405&rft_dat=%3Cproquest_doaj_%3E2530151479%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-417b84f1b6d11659bed9dd47b92286acaf073144a5eca26931e483e7ee21d6753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2530151479&rft_id=info:pmid/33919066&rfr_iscdi=true |