Loading…
Lightweight high-performance pose recognition network: HR-LiteNet
To address the limited resources of mobile devices and embedded platforms, we propose a lightweight pose recognition network named HR-LiteNet. Built upon a high-resolution architecture, the network incorporates depthwise separable convolutions, Ghost modules, and the Convolutional Block Attention Mo...
Saved in:
Published in: | Electronic research archive 2024, Vol.32 (2), p.1145-1159 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To address the limited resources of mobile devices and embedded platforms, we propose a lightweight pose recognition network named HR-LiteNet. Built upon a high-resolution architecture, the network incorporates depthwise separable convolutions, Ghost modules, and the Convolutional Block Attention Module to construct L_block and L_basic modules, aiming to reduce network parameters and computational complexity while maintaining high accuracy. Experimental results demonstrate that on the MPII validation dataset, HR-LiteNet achieves an accuracy of 83.643% while reducing the parameter count by approximately 26.58 M and lowering computational complexity by 8.04 GFLOPs compared to the HRNet network. Moreover, HR-LiteNet outperforms other lightweight models in terms of parameter count and computational requirements while maintaining high accuracy. This design provides a novel solution for pose recognition in resource-constrained environments, striking a balance between accuracy and lightweight demands. |
---|---|
ISSN: | 2688-1594 2688-1594 |
DOI: | 10.3934/era.2024055 |