Loading…
Recent Advances in Single-Molecule Sensors Based on STM Break Junction Measurements
Single-molecule recognition and detection with the highest resolution measurement has been one of the ultimate goals in science and engineering. Break junction techniques, originally developed to measure single-molecule conductance, recently have also been proven to have the capacity for the label-f...
Saved in:
Published in: | Biosensors (Basel) 2022-07, Vol.12 (8), p.565 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Single-molecule recognition and detection with the highest resolution measurement has been one of the ultimate goals in science and engineering. Break junction techniques, originally developed to measure single-molecule conductance, recently have also been proven to have the capacity for the label-free exploration of single-molecule physics and chemistry, which paves a new way for single-molecule detection with high temporal resolution. In this review, we outline the primary advances and potential of the STM break junction technique for qualitative identification and quantitative detection at a single-molecule level. The principles of operation of these single-molecule electrical sensing mainly in three regimes, ion, environmental pH and genetic material detection, are summarized. It clearly proves that the single-molecule electrical measurements with break junction techniques show a promising perspective for designing a simple, label-free and nondestructive electrical sensor with ultrahigh sensitivity and excellent selectivity. |
---|---|
ISSN: | 2079-6374 2079-6374 |
DOI: | 10.3390/bios12080565 |