Loading…
Haphazard Intentional Sampling in Survey and Allocation Studies on COVID-19 Prevalence and Vaccine Efficacy
Haphazard intentional sampling is a method developed by our research group for two main purposes: (i) sampling design, where the interest is to select small samples that accurately represent the general population regarding a set of covariates of interest; or (ii) experimental design, where the inte...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2022-01, Vol.24 (2), p.225 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-609ce81dfd4c8f4ae1a348c5be4f96ba7f5b89c5b585a0081f9a82c945a31a513 |
container_end_page | |
container_issue | 2 |
container_start_page | 225 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 24 |
creator | Miguel, Miguel G R Waissman, Rafael P Lauretto, Marcelo S Stern, Julio M |
description | Haphazard intentional sampling is a method developed by our research group for two main purposes: (i) sampling design, where the interest is to select small samples that accurately represent the general population regarding a set of covariates of interest; or (ii) experimental design, where the interest is to assemble treatment groups that are similar to each other regarding a set of covariates of interest. Rerandomization is a similar method proposed by K. Morgan and D. Rubin. Both methods intentionally select good samples but, in slightly different ways, also introduce some noise in the selection procedure aiming to obtain a decoupling effect that avoids systematic bias or other confounding effects. This paper compares the performance of the aforementioned methods and the standard randomization method in two benchmark problems concerning SARS-CoV-2 prevalence and vaccine efficacy. Numerical simulation studies show that haphazard intentional sampling can either reduce operating costs in up to 80% to achieve the same estimation errors yielded by the standard randomization method or, the other way around, reduce estimation errors in up to 80% using the same sample sizes. |
doi_str_mv | 10.3390/e24020225 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_507d74c3d4f64914b4f627bf8a9af812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_507d74c3d4f64914b4f627bf8a9af812</doaj_id><sourcerecordid>2632750269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-609ce81dfd4c8f4ae1a348c5be4f96ba7f5b89c5b585a0081f9a82c945a31a513</originalsourceid><addsrcrecordid>eNpdkk1vEzEQQFcIREvhwB9AlrjAYcGfu_YFqQqFRqpUpECv1qzXTh0cO_XuRgq_HjcpUctpZjxPTyPPVNVbgj8xpvBnSzmmmFLxrDolWKmaM4yfP8pPqlfDsMKYMkqal9UJExQLQdRp9fsSNrfwB3KP5nG0cfQpQkALWG-Cj0vkI1pMeWt3CGKPzkNIBu4ZtBin3tsBlXR2fTP_WhOFfmS7hWCjsXv6Bozx0aIL57wBs3tdvXAQBvvmIZ5Vv75d_Jxd1lfX3-ez86vacKrGusHKWEl613MjHQdLgHFpRGe5U00HrROdVKUWUgDGkjgFkhrFBTACgrCzan7w9glWepP9GvJOJ_B6_5DyUkMevQlWC9z2LTes567hivCuRNp2ToICJwktri8H12bq1rY35YcyhCfSp53ob_UybbWULSGEFcGHB0FOd5MdRr32g7EhQLRpGjRtGJO8JUwW9P1_6CpNuaxjT9FWYNqoQn08UCanYcjWHYchWN-fgz6eQ2HfPZ7-SP7bP_sLA_Gu0w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632750269</pqid></control><display><type>article</type><title>Haphazard Intentional Sampling in Survey and Allocation Studies on COVID-19 Prevalence and Vaccine Efficacy</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Coronavirus Research Database</source><creator>Miguel, Miguel G R ; Waissman, Rafael P ; Lauretto, Marcelo S ; Stern, Julio M</creator><creatorcontrib>Miguel, Miguel G R ; Waissman, Rafael P ; Lauretto, Marcelo S ; Stern, Julio M</creatorcontrib><description>Haphazard intentional sampling is a method developed by our research group for two main purposes: (i) sampling design, where the interest is to select small samples that accurately represent the general population regarding a set of covariates of interest; or (ii) experimental design, where the interest is to assemble treatment groups that are similar to each other regarding a set of covariates of interest. Rerandomization is a similar method proposed by K. Morgan and D. Rubin. Both methods intentionally select good samples but, in slightly different ways, also introduce some noise in the selection procedure aiming to obtain a decoupling effect that avoids systematic bias or other confounding effects. This paper compares the performance of the aforementioned methods and the standard randomization method in two benchmark problems concerning SARS-CoV-2 prevalence and vaccine efficacy. Numerical simulation studies show that haphazard intentional sampling can either reduce operating costs in up to 80% to achieve the same estimation errors yielded by the standard randomization method or, the other way around, reduce estimation errors in up to 80% using the same sample sizes.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e24020225</identifier><identifier>PMID: 35205519</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Case studies ; Coronaviruses ; COVID-19 ; Decoupling ; Design of experiments ; Errors ; haphazard intentional sampling ; Households ; Infections ; Linear programming ; Methods ; Normal distribution ; optimal sampling design ; Optimization ; pure randomization ; Randomization ; rerandomization ; Sample size ; Sampling designs ; Severe acute respiratory syndrome coronavirus 2 ; Vaccines</subject><ispartof>Entropy (Basel, Switzerland), 2022-01, Vol.24 (2), p.225</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c429t-609ce81dfd4c8f4ae1a348c5be4f96ba7f5b89c5b585a0081f9a82c945a31a513</cites><orcidid>0000-0001-5507-2368 ; 0000-0003-2720-3871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632750269?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632750269?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,25734,27905,27906,36993,36994,38497,43876,44571,53772,53774,74161,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35205519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miguel, Miguel G R</creatorcontrib><creatorcontrib>Waissman, Rafael P</creatorcontrib><creatorcontrib>Lauretto, Marcelo S</creatorcontrib><creatorcontrib>Stern, Julio M</creatorcontrib><title>Haphazard Intentional Sampling in Survey and Allocation Studies on COVID-19 Prevalence and Vaccine Efficacy</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>Haphazard intentional sampling is a method developed by our research group for two main purposes: (i) sampling design, where the interest is to select small samples that accurately represent the general population regarding a set of covariates of interest; or (ii) experimental design, where the interest is to assemble treatment groups that are similar to each other regarding a set of covariates of interest. Rerandomization is a similar method proposed by K. Morgan and D. Rubin. Both methods intentionally select good samples but, in slightly different ways, also introduce some noise in the selection procedure aiming to obtain a decoupling effect that avoids systematic bias or other confounding effects. This paper compares the performance of the aforementioned methods and the standard randomization method in two benchmark problems concerning SARS-CoV-2 prevalence and vaccine efficacy. Numerical simulation studies show that haphazard intentional sampling can either reduce operating costs in up to 80% to achieve the same estimation errors yielded by the standard randomization method or, the other way around, reduce estimation errors in up to 80% using the same sample sizes.</description><subject>Case studies</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Decoupling</subject><subject>Design of experiments</subject><subject>Errors</subject><subject>haphazard intentional sampling</subject><subject>Households</subject><subject>Infections</subject><subject>Linear programming</subject><subject>Methods</subject><subject>Normal distribution</subject><subject>optimal sampling design</subject><subject>Optimization</subject><subject>pure randomization</subject><subject>Randomization</subject><subject>rerandomization</subject><subject>Sample size</subject><subject>Sampling designs</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Vaccines</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQQFcIREvhwB9AlrjAYcGfu_YFqQqFRqpUpECv1qzXTh0cO_XuRgq_HjcpUctpZjxPTyPPVNVbgj8xpvBnSzmmmFLxrDolWKmaM4yfP8pPqlfDsMKYMkqal9UJExQLQdRp9fsSNrfwB3KP5nG0cfQpQkALWG-Cj0vkI1pMeWt3CGKPzkNIBu4ZtBin3tsBlXR2fTP_WhOFfmS7hWCjsXv6Bozx0aIL57wBs3tdvXAQBvvmIZ5Vv75d_Jxd1lfX3-ez86vacKrGusHKWEl613MjHQdLgHFpRGe5U00HrROdVKUWUgDGkjgFkhrFBTACgrCzan7w9glWepP9GvJOJ_B6_5DyUkMevQlWC9z2LTes567hivCuRNp2ToICJwktri8H12bq1rY35YcyhCfSp53ob_UybbWULSGEFcGHB0FOd5MdRr32g7EhQLRpGjRtGJO8JUwW9P1_6CpNuaxjT9FWYNqoQn08UCanYcjWHYchWN-fgz6eQ2HfPZ7-SP7bP_sLA_Gu0w</recordid><startdate>20220131</startdate><enddate>20220131</enddate><creator>Miguel, Miguel G R</creator><creator>Waissman, Rafael P</creator><creator>Lauretto, Marcelo S</creator><creator>Stern, Julio M</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5507-2368</orcidid><orcidid>https://orcid.org/0000-0003-2720-3871</orcidid></search><sort><creationdate>20220131</creationdate><title>Haphazard Intentional Sampling in Survey and Allocation Studies on COVID-19 Prevalence and Vaccine Efficacy</title><author>Miguel, Miguel G R ; Waissman, Rafael P ; Lauretto, Marcelo S ; Stern, Julio M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-609ce81dfd4c8f4ae1a348c5be4f96ba7f5b89c5b585a0081f9a82c945a31a513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Case studies</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Decoupling</topic><topic>Design of experiments</topic><topic>Errors</topic><topic>haphazard intentional sampling</topic><topic>Households</topic><topic>Infections</topic><topic>Linear programming</topic><topic>Methods</topic><topic>Normal distribution</topic><topic>optimal sampling design</topic><topic>Optimization</topic><topic>pure randomization</topic><topic>Randomization</topic><topic>rerandomization</topic><topic>Sample size</topic><topic>Sampling designs</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miguel, Miguel G R</creatorcontrib><creatorcontrib>Waissman, Rafael P</creatorcontrib><creatorcontrib>Lauretto, Marcelo S</creatorcontrib><creatorcontrib>Stern, Julio M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miguel, Miguel G R</au><au>Waissman, Rafael P</au><au>Lauretto, Marcelo S</au><au>Stern, Julio M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Haphazard Intentional Sampling in Survey and Allocation Studies on COVID-19 Prevalence and Vaccine Efficacy</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2022-01-31</date><risdate>2022</risdate><volume>24</volume><issue>2</issue><spage>225</spage><pages>225-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Haphazard intentional sampling is a method developed by our research group for two main purposes: (i) sampling design, where the interest is to select small samples that accurately represent the general population regarding a set of covariates of interest; or (ii) experimental design, where the interest is to assemble treatment groups that are similar to each other regarding a set of covariates of interest. Rerandomization is a similar method proposed by K. Morgan and D. Rubin. Both methods intentionally select good samples but, in slightly different ways, also introduce some noise in the selection procedure aiming to obtain a decoupling effect that avoids systematic bias or other confounding effects. This paper compares the performance of the aforementioned methods and the standard randomization method in two benchmark problems concerning SARS-CoV-2 prevalence and vaccine efficacy. Numerical simulation studies show that haphazard intentional sampling can either reduce operating costs in up to 80% to achieve the same estimation errors yielded by the standard randomization method or, the other way around, reduce estimation errors in up to 80% using the same sample sizes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35205519</pmid><doi>10.3390/e24020225</doi><orcidid>https://orcid.org/0000-0001-5507-2368</orcidid><orcidid>https://orcid.org/0000-0003-2720-3871</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2022-01, Vol.24 (2), p.225 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_507d74c3d4f64914b4f627bf8a9af812 |
source | Open Access: PubMed Central; Publicly Available Content Database; DOAJ Directory of Open Access Journals; Coronavirus Research Database |
subjects | Case studies Coronaviruses COVID-19 Decoupling Design of experiments Errors haphazard intentional sampling Households Infections Linear programming Methods Normal distribution optimal sampling design Optimization pure randomization Randomization rerandomization Sample size Sampling designs Severe acute respiratory syndrome coronavirus 2 Vaccines |
title | Haphazard Intentional Sampling in Survey and Allocation Studies on COVID-19 Prevalence and Vaccine Efficacy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Haphazard%20Intentional%20Sampling%20in%20Survey%20and%20Allocation%20Studies%20on%20COVID-19%20Prevalence%20and%20Vaccine%20Efficacy&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Miguel,%20Miguel%20G%20R&rft.date=2022-01-31&rft.volume=24&rft.issue=2&rft.spage=225&rft.pages=225-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e24020225&rft_dat=%3Cproquest_doaj_%3E2632750269%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-609ce81dfd4c8f4ae1a348c5be4f96ba7f5b89c5b585a0081f9a82c945a31a513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632750269&rft_id=info:pmid/35205519&rfr_iscdi=true |