Loading…

Haphazard Intentional Sampling in Survey and Allocation Studies on COVID-19 Prevalence and Vaccine Efficacy

Haphazard intentional sampling is a method developed by our research group for two main purposes: (i) sampling design, where the interest is to select small samples that accurately represent the general population regarding a set of covariates of interest; or (ii) experimental design, where the inte...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2022-01, Vol.24 (2), p.225
Main Authors: Miguel, Miguel G R, Waissman, Rafael P, Lauretto, Marcelo S, Stern, Julio M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c429t-609ce81dfd4c8f4ae1a348c5be4f96ba7f5b89c5b585a0081f9a82c945a31a513
container_end_page
container_issue 2
container_start_page 225
container_title Entropy (Basel, Switzerland)
container_volume 24
creator Miguel, Miguel G R
Waissman, Rafael P
Lauretto, Marcelo S
Stern, Julio M
description Haphazard intentional sampling is a method developed by our research group for two main purposes: (i) sampling design, where the interest is to select small samples that accurately represent the general population regarding a set of covariates of interest; or (ii) experimental design, where the interest is to assemble treatment groups that are similar to each other regarding a set of covariates of interest. Rerandomization is a similar method proposed by K. Morgan and D. Rubin. Both methods intentionally select good samples but, in slightly different ways, also introduce some noise in the selection procedure aiming to obtain a decoupling effect that avoids systematic bias or other confounding effects. This paper compares the performance of the aforementioned methods and the standard randomization method in two benchmark problems concerning SARS-CoV-2 prevalence and vaccine efficacy. Numerical simulation studies show that haphazard intentional sampling can either reduce operating costs in up to 80% to achieve the same estimation errors yielded by the standard randomization method or, the other way around, reduce estimation errors in up to 80% using the same sample sizes.
doi_str_mv 10.3390/e24020225
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_507d74c3d4f64914b4f627bf8a9af812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_507d74c3d4f64914b4f627bf8a9af812</doaj_id><sourcerecordid>2632750269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-609ce81dfd4c8f4ae1a348c5be4f96ba7f5b89c5b585a0081f9a82c945a31a513</originalsourceid><addsrcrecordid>eNpdkk1vEzEQQFcIREvhwB9AlrjAYcGfu_YFqQqFRqpUpECv1qzXTh0cO_XuRgq_HjcpUctpZjxPTyPPVNVbgj8xpvBnSzmmmFLxrDolWKmaM4yfP8pPqlfDsMKYMkqal9UJExQLQdRp9fsSNrfwB3KP5nG0cfQpQkALWG-Cj0vkI1pMeWt3CGKPzkNIBu4ZtBin3tsBlXR2fTP_WhOFfmS7hWCjsXv6Bozx0aIL57wBs3tdvXAQBvvmIZ5Vv75d_Jxd1lfX3-ez86vacKrGusHKWEl613MjHQdLgHFpRGe5U00HrROdVKUWUgDGkjgFkhrFBTACgrCzan7w9glWepP9GvJOJ_B6_5DyUkMevQlWC9z2LTes567hivCuRNp2ToICJwktri8H12bq1rY35YcyhCfSp53ob_UybbWULSGEFcGHB0FOd5MdRr32g7EhQLRpGjRtGJO8JUwW9P1_6CpNuaxjT9FWYNqoQn08UCanYcjWHYchWN-fgz6eQ2HfPZ7-SP7bP_sLA_Gu0w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632750269</pqid></control><display><type>article</type><title>Haphazard Intentional Sampling in Survey and Allocation Studies on COVID-19 Prevalence and Vaccine Efficacy</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Coronavirus Research Database</source><creator>Miguel, Miguel G R ; Waissman, Rafael P ; Lauretto, Marcelo S ; Stern, Julio M</creator><creatorcontrib>Miguel, Miguel G R ; Waissman, Rafael P ; Lauretto, Marcelo S ; Stern, Julio M</creatorcontrib><description>Haphazard intentional sampling is a method developed by our research group for two main purposes: (i) sampling design, where the interest is to select small samples that accurately represent the general population regarding a set of covariates of interest; or (ii) experimental design, where the interest is to assemble treatment groups that are similar to each other regarding a set of covariates of interest. Rerandomization is a similar method proposed by K. Morgan and D. Rubin. Both methods intentionally select good samples but, in slightly different ways, also introduce some noise in the selection procedure aiming to obtain a decoupling effect that avoids systematic bias or other confounding effects. This paper compares the performance of the aforementioned methods and the standard randomization method in two benchmark problems concerning SARS-CoV-2 prevalence and vaccine efficacy. Numerical simulation studies show that haphazard intentional sampling can either reduce operating costs in up to 80% to achieve the same estimation errors yielded by the standard randomization method or, the other way around, reduce estimation errors in up to 80% using the same sample sizes.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e24020225</identifier><identifier>PMID: 35205519</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Case studies ; Coronaviruses ; COVID-19 ; Decoupling ; Design of experiments ; Errors ; haphazard intentional sampling ; Households ; Infections ; Linear programming ; Methods ; Normal distribution ; optimal sampling design ; Optimization ; pure randomization ; Randomization ; rerandomization ; Sample size ; Sampling designs ; Severe acute respiratory syndrome coronavirus 2 ; Vaccines</subject><ispartof>Entropy (Basel, Switzerland), 2022-01, Vol.24 (2), p.225</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c429t-609ce81dfd4c8f4ae1a348c5be4f96ba7f5b89c5b585a0081f9a82c945a31a513</cites><orcidid>0000-0001-5507-2368 ; 0000-0003-2720-3871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632750269?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632750269?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,25734,27905,27906,36993,36994,38497,43876,44571,53772,53774,74161,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35205519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miguel, Miguel G R</creatorcontrib><creatorcontrib>Waissman, Rafael P</creatorcontrib><creatorcontrib>Lauretto, Marcelo S</creatorcontrib><creatorcontrib>Stern, Julio M</creatorcontrib><title>Haphazard Intentional Sampling in Survey and Allocation Studies on COVID-19 Prevalence and Vaccine Efficacy</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>Haphazard intentional sampling is a method developed by our research group for two main purposes: (i) sampling design, where the interest is to select small samples that accurately represent the general population regarding a set of covariates of interest; or (ii) experimental design, where the interest is to assemble treatment groups that are similar to each other regarding a set of covariates of interest. Rerandomization is a similar method proposed by K. Morgan and D. Rubin. Both methods intentionally select good samples but, in slightly different ways, also introduce some noise in the selection procedure aiming to obtain a decoupling effect that avoids systematic bias or other confounding effects. This paper compares the performance of the aforementioned methods and the standard randomization method in two benchmark problems concerning SARS-CoV-2 prevalence and vaccine efficacy. Numerical simulation studies show that haphazard intentional sampling can either reduce operating costs in up to 80% to achieve the same estimation errors yielded by the standard randomization method or, the other way around, reduce estimation errors in up to 80% using the same sample sizes.</description><subject>Case studies</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Decoupling</subject><subject>Design of experiments</subject><subject>Errors</subject><subject>haphazard intentional sampling</subject><subject>Households</subject><subject>Infections</subject><subject>Linear programming</subject><subject>Methods</subject><subject>Normal distribution</subject><subject>optimal sampling design</subject><subject>Optimization</subject><subject>pure randomization</subject><subject>Randomization</subject><subject>rerandomization</subject><subject>Sample size</subject><subject>Sampling designs</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Vaccines</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQQFcIREvhwB9AlrjAYcGfu_YFqQqFRqpUpECv1qzXTh0cO_XuRgq_HjcpUctpZjxPTyPPVNVbgj8xpvBnSzmmmFLxrDolWKmaM4yfP8pPqlfDsMKYMkqal9UJExQLQdRp9fsSNrfwB3KP5nG0cfQpQkALWG-Cj0vkI1pMeWt3CGKPzkNIBu4ZtBin3tsBlXR2fTP_WhOFfmS7hWCjsXv6Bozx0aIL57wBs3tdvXAQBvvmIZ5Vv75d_Jxd1lfX3-ez86vacKrGusHKWEl613MjHQdLgHFpRGe5U00HrROdVKUWUgDGkjgFkhrFBTACgrCzan7w9glWepP9GvJOJ_B6_5DyUkMevQlWC9z2LTes567hivCuRNp2ToICJwktri8H12bq1rY35YcyhCfSp53ob_UybbWULSGEFcGHB0FOd5MdRr32g7EhQLRpGjRtGJO8JUwW9P1_6CpNuaxjT9FWYNqoQn08UCanYcjWHYchWN-fgz6eQ2HfPZ7-SP7bP_sLA_Gu0w</recordid><startdate>20220131</startdate><enddate>20220131</enddate><creator>Miguel, Miguel G R</creator><creator>Waissman, Rafael P</creator><creator>Lauretto, Marcelo S</creator><creator>Stern, Julio M</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5507-2368</orcidid><orcidid>https://orcid.org/0000-0003-2720-3871</orcidid></search><sort><creationdate>20220131</creationdate><title>Haphazard Intentional Sampling in Survey and Allocation Studies on COVID-19 Prevalence and Vaccine Efficacy</title><author>Miguel, Miguel G R ; Waissman, Rafael P ; Lauretto, Marcelo S ; Stern, Julio M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-609ce81dfd4c8f4ae1a348c5be4f96ba7f5b89c5b585a0081f9a82c945a31a513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Case studies</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Decoupling</topic><topic>Design of experiments</topic><topic>Errors</topic><topic>haphazard intentional sampling</topic><topic>Households</topic><topic>Infections</topic><topic>Linear programming</topic><topic>Methods</topic><topic>Normal distribution</topic><topic>optimal sampling design</topic><topic>Optimization</topic><topic>pure randomization</topic><topic>Randomization</topic><topic>rerandomization</topic><topic>Sample size</topic><topic>Sampling designs</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miguel, Miguel G R</creatorcontrib><creatorcontrib>Waissman, Rafael P</creatorcontrib><creatorcontrib>Lauretto, Marcelo S</creatorcontrib><creatorcontrib>Stern, Julio M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miguel, Miguel G R</au><au>Waissman, Rafael P</au><au>Lauretto, Marcelo S</au><au>Stern, Julio M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Haphazard Intentional Sampling in Survey and Allocation Studies on COVID-19 Prevalence and Vaccine Efficacy</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2022-01-31</date><risdate>2022</risdate><volume>24</volume><issue>2</issue><spage>225</spage><pages>225-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Haphazard intentional sampling is a method developed by our research group for two main purposes: (i) sampling design, where the interest is to select small samples that accurately represent the general population regarding a set of covariates of interest; or (ii) experimental design, where the interest is to assemble treatment groups that are similar to each other regarding a set of covariates of interest. Rerandomization is a similar method proposed by K. Morgan and D. Rubin. Both methods intentionally select good samples but, in slightly different ways, also introduce some noise in the selection procedure aiming to obtain a decoupling effect that avoids systematic bias or other confounding effects. This paper compares the performance of the aforementioned methods and the standard randomization method in two benchmark problems concerning SARS-CoV-2 prevalence and vaccine efficacy. Numerical simulation studies show that haphazard intentional sampling can either reduce operating costs in up to 80% to achieve the same estimation errors yielded by the standard randomization method or, the other way around, reduce estimation errors in up to 80% using the same sample sizes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35205519</pmid><doi>10.3390/e24020225</doi><orcidid>https://orcid.org/0000-0001-5507-2368</orcidid><orcidid>https://orcid.org/0000-0003-2720-3871</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2022-01, Vol.24 (2), p.225
issn 1099-4300
1099-4300
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_507d74c3d4f64914b4f627bf8a9af812
source Open Access: PubMed Central; Publicly Available Content Database; DOAJ Directory of Open Access Journals; Coronavirus Research Database
subjects Case studies
Coronaviruses
COVID-19
Decoupling
Design of experiments
Errors
haphazard intentional sampling
Households
Infections
Linear programming
Methods
Normal distribution
optimal sampling design
Optimization
pure randomization
Randomization
rerandomization
Sample size
Sampling designs
Severe acute respiratory syndrome coronavirus 2
Vaccines
title Haphazard Intentional Sampling in Survey and Allocation Studies on COVID-19 Prevalence and Vaccine Efficacy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Haphazard%20Intentional%20Sampling%20in%20Survey%20and%20Allocation%20Studies%20on%20COVID-19%20Prevalence%20and%20Vaccine%20Efficacy&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Miguel,%20Miguel%20G%20R&rft.date=2022-01-31&rft.volume=24&rft.issue=2&rft.spage=225&rft.pages=225-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e24020225&rft_dat=%3Cproquest_doaj_%3E2632750269%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-609ce81dfd4c8f4ae1a348c5be4f96ba7f5b89c5b585a0081f9a82c945a31a513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632750269&rft_id=info:pmid/35205519&rfr_iscdi=true