Loading…

Phonon-induced disorder in dynamics of optically pumped metals from nonlinear electron-phonon coupling

The non-equilibrium dynamics of matter excited by light may produce electronic phases, such as laser-induced high-transition-temperature superconductivity, that do not exist in equilibrium. Here we simulate the dynamics of a metal driven at initial time by a spatially uniform pump that excites dipol...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-10, Vol.12 (1), p.5803-5803, Article 5803
Main Authors: Sous, John, Kloss, Benedikt, Kennes, Dante M., Reichman, David R., Millis, Andrew J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The non-equilibrium dynamics of matter excited by light may produce electronic phases, such as laser-induced high-transition-temperature superconductivity, that do not exist in equilibrium. Here we simulate the dynamics of a metal driven at initial time by a spatially uniform pump that excites dipole-active vibrational modes which couple nonlinearly to electrons. We provide evidence for rapid loss of spatial coherence, leading to emergent effective disorder in the dynamics, which arises in a system unitarily evolving under a translation-invariant Hamiltonian, and dominates the electronic behavior as the system evolves towards a correlated electron-phonon long-time state, possibly explaining why transient superconductivity is not observed. Our framework provides a basis within which to understand correlation dynamics in current pump-probe experiments of vibrationally coupled electrons, highlight the importance of the evolution of phase coherence, and demonstrate that pumped electron-phonon systems provide a means of realizing dynamically induced disorder in translation-invariant systems. Superconductivity reported in metals driven away from equilibrium via optical pumping has been proposed to arise from nonlinear coupling between electrons and optically excited phonons. The authors use an exact approach to show that here, disorder, which disfavors superconductivity, emerges even though the system is translationally invariant.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-26030-3