Loading…

Multistage Fault Feature Extraction of Consistent Optimization for Rolling Bearings Based on Correlated Kurtosis

Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the prob...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration 2020, Vol.2020 (2020), p.1-16
Main Authors: Tu, Wenbin, Zhou, Jianmin, Xiong, Guoliang, Cai, Binghuan, Zhang, Long, Yu, Yinquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3
cites cdi_FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3
container_end_page 16
container_issue 2020
container_start_page 1
container_title Shock and vibration
container_volume 2020
creator Tu, Wenbin
Zhou, Jianmin
Xiong, Guoliang
Cai, Binghuan
Zhang, Long
Yu, Yinquan
description Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method.
doi_str_mv 10.1155/2020/8846156
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_508ce4b1d53a4df59a3360a9db8efb61</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697129738</galeid><doaj_id>oai_doaj_org_article_508ce4b1d53a4df59a3360a9db8efb61</doaj_id><sourcerecordid>A697129738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEqVw44wscYRt_ZnYx3bVLRVFlRCcrYkzXrzKxovtqMCvr7ep4Ih8mK9nXo38Ns1bRs8YU-qcU07PtZYtU-2z5oTpTq0Mp-J5zWlHV6bl_GXzKucdpVSJVp40hy_zWEIusEWygZqTDUKZE5KrXyWBKyFOJHqyjlOuGE6F3B1K2Ic_8DjyMZGvcRzDtCWXCKnGTC4h40DqdB1TwhFKrT7PqcQq8bp54WHM-OYpnjbfN1ff1p9Wt3fXN-uL25VTTJSVNqZVfS-xwx6lAg5OmkF3rdcKHdWCMukHZZzxmhnEnvUelKsTCVSbXpw2N4vuEGFnDynsIf22EYJ9bMS0tZBKcCNaRbVD2bNBCZCDVwaEaCmYodfo-5ZVrfeL1iHFnzPmYndxTlM933KpJDOCSlmps4XaQhUNk4_HD6xvwH1wcUIfav-iNR3jphO6LnxcFlyKOSf0f89k1B4NtUdD7ZOhFf-w4D_CNMB9-B_9bqGxMujhH80Z11qIB7uHqtc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454193044</pqid></control><display><type>article</type><title>Multistage Fault Feature Extraction of Consistent Optimization for Rolling Bearings Based on Correlated Kurtosis</title><source>Wiley Online Library</source><source>Publicly Available Content Database</source><creator>Tu, Wenbin ; Zhou, Jianmin ; Xiong, Guoliang ; Cai, Binghuan ; Zhang, Long ; Yu, Yinquan</creator><contributor>Shen, Changqing ; Changqing Shen</contributor><creatorcontrib>Tu, Wenbin ; Zhou, Jianmin ; Xiong, Guoliang ; Cai, Binghuan ; Zhang, Long ; Yu, Yinquan ; Shen, Changqing ; Changqing Shen</creatorcontrib><description>Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2020/8846156</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Background noise ; Bearings ; Correlation ; Decomposition ; Diagnostic systems ; Fault diagnosis ; Feature extraction ; Impulses ; Kurtosis ; Noise ; Optimization ; Q factors ; Roller bearings ; Signal processing ; Spectrum analysis ; Vibration ; Vibration measurement ; Wavelet transforms</subject><ispartof>Shock and vibration, 2020, Vol.2020 (2020), p.1-16</ispartof><rights>Copyright © 2020 Long Zhang et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Long Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3</citedby><cites>FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3</cites><orcidid>0000-0003-2976-1412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2454193044/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2454193044?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,25734,27904,27905,27906,36993,44571,74875</link.rule.ids></links><search><contributor>Shen, Changqing</contributor><contributor>Changqing Shen</contributor><creatorcontrib>Tu, Wenbin</creatorcontrib><creatorcontrib>Zhou, Jianmin</creatorcontrib><creatorcontrib>Xiong, Guoliang</creatorcontrib><creatorcontrib>Cai, Binghuan</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Yu, Yinquan</creatorcontrib><title>Multistage Fault Feature Extraction of Consistent Optimization for Rolling Bearings Based on Correlated Kurtosis</title><title>Shock and vibration</title><description>Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method.</description><subject>Background noise</subject><subject>Bearings</subject><subject>Correlation</subject><subject>Decomposition</subject><subject>Diagnostic systems</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Impulses</subject><subject>Kurtosis</subject><subject>Noise</subject><subject>Optimization</subject><subject>Q factors</subject><subject>Roller bearings</subject><subject>Signal processing</subject><subject>Spectrum analysis</subject><subject>Vibration</subject><subject>Vibration measurement</subject><subject>Wavelet transforms</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQhiMEEqVw44wscYRt_ZnYx3bVLRVFlRCcrYkzXrzKxovtqMCvr7ep4Ih8mK9nXo38Ns1bRs8YU-qcU07PtZYtU-2z5oTpTq0Mp-J5zWlHV6bl_GXzKucdpVSJVp40hy_zWEIusEWygZqTDUKZE5KrXyWBKyFOJHqyjlOuGE6F3B1K2Ic_8DjyMZGvcRzDtCWXCKnGTC4h40DqdB1TwhFKrT7PqcQq8bp54WHM-OYpnjbfN1ff1p9Wt3fXN-uL25VTTJSVNqZVfS-xwx6lAg5OmkF3rdcKHdWCMukHZZzxmhnEnvUelKsTCVSbXpw2N4vuEGFnDynsIf22EYJ9bMS0tZBKcCNaRbVD2bNBCZCDVwaEaCmYodfo-5ZVrfeL1iHFnzPmYndxTlM933KpJDOCSlmps4XaQhUNk4_HD6xvwH1wcUIfav-iNR3jphO6LnxcFlyKOSf0f89k1B4NtUdD7ZOhFf-w4D_CNMB9-B_9bqGxMujhH80Z11qIB7uHqtc</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tu, Wenbin</creator><creator>Zhou, Jianmin</creator><creator>Xiong, Guoliang</creator><creator>Cai, Binghuan</creator><creator>Zhang, Long</creator><creator>Yu, Yinquan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2976-1412</orcidid></search><sort><creationdate>2020</creationdate><title>Multistage Fault Feature Extraction of Consistent Optimization for Rolling Bearings Based on Correlated Kurtosis</title><author>Tu, Wenbin ; Zhou, Jianmin ; Xiong, Guoliang ; Cai, Binghuan ; Zhang, Long ; Yu, Yinquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Background noise</topic><topic>Bearings</topic><topic>Correlation</topic><topic>Decomposition</topic><topic>Diagnostic systems</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Impulses</topic><topic>Kurtosis</topic><topic>Noise</topic><topic>Optimization</topic><topic>Q factors</topic><topic>Roller bearings</topic><topic>Signal processing</topic><topic>Spectrum analysis</topic><topic>Vibration</topic><topic>Vibration measurement</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Wenbin</creatorcontrib><creatorcontrib>Zhou, Jianmin</creatorcontrib><creatorcontrib>Xiong, Guoliang</creatorcontrib><creatorcontrib>Cai, Binghuan</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Yu, Yinquan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Wenbin</au><au>Zhou, Jianmin</au><au>Xiong, Guoliang</au><au>Cai, Binghuan</au><au>Zhang, Long</au><au>Yu, Yinquan</au><au>Shen, Changqing</au><au>Changqing Shen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistage Fault Feature Extraction of Consistent Optimization for Rolling Bearings Based on Correlated Kurtosis</atitle><jtitle>Shock and vibration</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8846156</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2976-1412</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9622
ispartof Shock and vibration, 2020, Vol.2020 (2020), p.1-16
issn 1070-9622
1875-9203
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_508ce4b1d53a4df59a3360a9db8efb61
source Wiley Online Library; Publicly Available Content Database
subjects Background noise
Bearings
Correlation
Decomposition
Diagnostic systems
Fault diagnosis
Feature extraction
Impulses
Kurtosis
Noise
Optimization
Q factors
Roller bearings
Signal processing
Spectrum analysis
Vibration
Vibration measurement
Wavelet transforms
title Multistage Fault Feature Extraction of Consistent Optimization for Rolling Bearings Based on Correlated Kurtosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistage%20Fault%20Feature%20Extraction%20of%20Consistent%20Optimization%20for%20Rolling%20Bearings%20Based%20on%20Correlated%20Kurtosis&rft.jtitle=Shock%20and%20vibration&rft.au=Tu,%20Wenbin&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2020/8846156&rft_dat=%3Cgale_doaj_%3EA697129738%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454193044&rft_id=info:pmid/&rft_galeid=A697129738&rfr_iscdi=true