Loading…
Multistage Fault Feature Extraction of Consistent Optimization for Rolling Bearings Based on Correlated Kurtosis
Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the prob...
Saved in:
Published in: | Shock and vibration 2020, Vol.2020 (2020), p.1-16 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3 |
container_end_page | 16 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Shock and vibration |
container_volume | 2020 |
creator | Tu, Wenbin Zhou, Jianmin Xiong, Guoliang Cai, Binghuan Zhang, Long Yu, Yinquan |
description | Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method. |
doi_str_mv | 10.1155/2020/8846156 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_508ce4b1d53a4df59a3360a9db8efb61</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697129738</galeid><doaj_id>oai_doaj_org_article_508ce4b1d53a4df59a3360a9db8efb61</doaj_id><sourcerecordid>A697129738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEqVw44wscYRt_ZnYx3bVLRVFlRCcrYkzXrzKxovtqMCvr7ep4Ih8mK9nXo38Ns1bRs8YU-qcU07PtZYtU-2z5oTpTq0Mp-J5zWlHV6bl_GXzKucdpVSJVp40hy_zWEIusEWygZqTDUKZE5KrXyWBKyFOJHqyjlOuGE6F3B1K2Ic_8DjyMZGvcRzDtCWXCKnGTC4h40DqdB1TwhFKrT7PqcQq8bp54WHM-OYpnjbfN1ff1p9Wt3fXN-uL25VTTJSVNqZVfS-xwx6lAg5OmkF3rdcKHdWCMukHZZzxmhnEnvUelKsTCVSbXpw2N4vuEGFnDynsIf22EYJ9bMS0tZBKcCNaRbVD2bNBCZCDVwaEaCmYodfo-5ZVrfeL1iHFnzPmYndxTlM933KpJDOCSlmps4XaQhUNk4_HD6xvwH1wcUIfav-iNR3jphO6LnxcFlyKOSf0f89k1B4NtUdD7ZOhFf-w4D_CNMB9-B_9bqGxMujhH80Z11qIB7uHqtc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454193044</pqid></control><display><type>article</type><title>Multistage Fault Feature Extraction of Consistent Optimization for Rolling Bearings Based on Correlated Kurtosis</title><source>Wiley Online Library</source><source>Publicly Available Content Database</source><creator>Tu, Wenbin ; Zhou, Jianmin ; Xiong, Guoliang ; Cai, Binghuan ; Zhang, Long ; Yu, Yinquan</creator><contributor>Shen, Changqing ; Changqing Shen</contributor><creatorcontrib>Tu, Wenbin ; Zhou, Jianmin ; Xiong, Guoliang ; Cai, Binghuan ; Zhang, Long ; Yu, Yinquan ; Shen, Changqing ; Changqing Shen</creatorcontrib><description>Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2020/8846156</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Background noise ; Bearings ; Correlation ; Decomposition ; Diagnostic systems ; Fault diagnosis ; Feature extraction ; Impulses ; Kurtosis ; Noise ; Optimization ; Q factors ; Roller bearings ; Signal processing ; Spectrum analysis ; Vibration ; Vibration measurement ; Wavelet transforms</subject><ispartof>Shock and vibration, 2020, Vol.2020 (2020), p.1-16</ispartof><rights>Copyright © 2020 Long Zhang et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Long Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3</citedby><cites>FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3</cites><orcidid>0000-0003-2976-1412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2454193044/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2454193044?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,25734,27904,27905,27906,36993,44571,74875</link.rule.ids></links><search><contributor>Shen, Changqing</contributor><contributor>Changqing Shen</contributor><creatorcontrib>Tu, Wenbin</creatorcontrib><creatorcontrib>Zhou, Jianmin</creatorcontrib><creatorcontrib>Xiong, Guoliang</creatorcontrib><creatorcontrib>Cai, Binghuan</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Yu, Yinquan</creatorcontrib><title>Multistage Fault Feature Extraction of Consistent Optimization for Rolling Bearings Based on Correlated Kurtosis</title><title>Shock and vibration</title><description>Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method.</description><subject>Background noise</subject><subject>Bearings</subject><subject>Correlation</subject><subject>Decomposition</subject><subject>Diagnostic systems</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Impulses</subject><subject>Kurtosis</subject><subject>Noise</subject><subject>Optimization</subject><subject>Q factors</subject><subject>Roller bearings</subject><subject>Signal processing</subject><subject>Spectrum analysis</subject><subject>Vibration</subject><subject>Vibration measurement</subject><subject>Wavelet transforms</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQhiMEEqVw44wscYRt_ZnYx3bVLRVFlRCcrYkzXrzKxovtqMCvr7ep4Ih8mK9nXo38Ns1bRs8YU-qcU07PtZYtU-2z5oTpTq0Mp-J5zWlHV6bl_GXzKucdpVSJVp40hy_zWEIusEWygZqTDUKZE5KrXyWBKyFOJHqyjlOuGE6F3B1K2Ic_8DjyMZGvcRzDtCWXCKnGTC4h40DqdB1TwhFKrT7PqcQq8bp54WHM-OYpnjbfN1ff1p9Wt3fXN-uL25VTTJSVNqZVfS-xwx6lAg5OmkF3rdcKHdWCMukHZZzxmhnEnvUelKsTCVSbXpw2N4vuEGFnDynsIf22EYJ9bMS0tZBKcCNaRbVD2bNBCZCDVwaEaCmYodfo-5ZVrfeL1iHFnzPmYndxTlM933KpJDOCSlmps4XaQhUNk4_HD6xvwH1wcUIfav-iNR3jphO6LnxcFlyKOSf0f89k1B4NtUdD7ZOhFf-w4D_CNMB9-B_9bqGxMujhH80Z11qIB7uHqtc</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tu, Wenbin</creator><creator>Zhou, Jianmin</creator><creator>Xiong, Guoliang</creator><creator>Cai, Binghuan</creator><creator>Zhang, Long</creator><creator>Yu, Yinquan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2976-1412</orcidid></search><sort><creationdate>2020</creationdate><title>Multistage Fault Feature Extraction of Consistent Optimization for Rolling Bearings Based on Correlated Kurtosis</title><author>Tu, Wenbin ; Zhou, Jianmin ; Xiong, Guoliang ; Cai, Binghuan ; Zhang, Long ; Yu, Yinquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Background noise</topic><topic>Bearings</topic><topic>Correlation</topic><topic>Decomposition</topic><topic>Diagnostic systems</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Impulses</topic><topic>Kurtosis</topic><topic>Noise</topic><topic>Optimization</topic><topic>Q factors</topic><topic>Roller bearings</topic><topic>Signal processing</topic><topic>Spectrum analysis</topic><topic>Vibration</topic><topic>Vibration measurement</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Wenbin</creatorcontrib><creatorcontrib>Zhou, Jianmin</creatorcontrib><creatorcontrib>Xiong, Guoliang</creatorcontrib><creatorcontrib>Cai, Binghuan</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Yu, Yinquan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Wenbin</au><au>Zhou, Jianmin</au><au>Xiong, Guoliang</au><au>Cai, Binghuan</au><au>Zhang, Long</au><au>Yu, Yinquan</au><au>Shen, Changqing</au><au>Changqing Shen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistage Fault Feature Extraction of Consistent Optimization for Rolling Bearings Based on Correlated Kurtosis</atitle><jtitle>Shock and vibration</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8846156</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2976-1412</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9622 |
ispartof | Shock and vibration, 2020, Vol.2020 (2020), p.1-16 |
issn | 1070-9622 1875-9203 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_508ce4b1d53a4df59a3360a9db8efb61 |
source | Wiley Online Library; Publicly Available Content Database |
subjects | Background noise Bearings Correlation Decomposition Diagnostic systems Fault diagnosis Feature extraction Impulses Kurtosis Noise Optimization Q factors Roller bearings Signal processing Spectrum analysis Vibration Vibration measurement Wavelet transforms |
title | Multistage Fault Feature Extraction of Consistent Optimization for Rolling Bearings Based on Correlated Kurtosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistage%20Fault%20Feature%20Extraction%20of%20Consistent%20Optimization%20for%20Rolling%20Bearings%20Based%20on%20Correlated%20Kurtosis&rft.jtitle=Shock%20and%20vibration&rft.au=Tu,%20Wenbin&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2020/8846156&rft_dat=%3Cgale_doaj_%3EA697129738%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-89965bb4e7ebe45a2ac49d876f85ec083014fd59c9f819eeb1bfa5cc084a089b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454193044&rft_id=info:pmid/&rft_galeid=A697129738&rfr_iscdi=true |