Loading…
STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying
This study proposes a perception and analysis method for precise aerial spraying based on three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-tempor...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.145997-146008 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-34cfee9fe9f25e9c442a2cc7be5c2e4b16e5a254c5910d1b566e14d13bac679a3 |
container_end_page | 146008 |
container_issue | |
container_start_page | 145997 |
container_title | IEEE access |
container_volume | 12 |
creator | Seol, Jaehwi Kim, Changjo Ju, Eunji Son, Hyoung Il |
description | This study proposes a perception and analysis method for precise aerial spraying based on three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-temporal data are processed for the segmented point cloud data. The spray from each nozzle is clustered through spatial data processing, and clustering is based on this information. This approach allows each nozzle to be distinguished and mapped. Processing temporal data compensates for unsensed or noisy data points and predicts the water droplet trajectories, enhancing the spray data. This method more accurately measures the shape of water droplets. Experiments altering the flight conditions of unmanned aerial vehicles (UAVs) were conducted to assess the proposed framework, demonstrating that processing is feasible in the onboard system of the UAV. The proposed method has potential application in control systems for precise spraying in the future. |
doi_str_mv | 10.1109/ACCESS.2024.3473538 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_50a14b8ad01a4f3faf40732923a8b746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10704678</ieee_id><doaj_id>oai_doaj_org_article_50a14b8ad01a4f3faf40732923a8b746</doaj_id><sourcerecordid>3115573669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-34cfee9fe9f25e9c442a2cc7be5c2e4b16e5a254c5910d1b566e14d13bac679a3</originalsourceid><addsrcrecordid>eNpNkVtr4zAQhc3Swpa2v6D7YNhnZ3WXtW9u6A0KDTh9FmN5XBScyJXch_z7KuuydBDMMJzzDeIUxQ0lK0qJ-dOs13dtu2KEiRUXmkte_yguGFWmyrM6-zb_LK5T2pFcdV5JfVH07XbTtH_LdoLZw1htcT-FCGN578cZoz-8VbeQsC83GB1Osw-HEg592RxgPCafyvaYZtyXQ4jlJqLz6aRosjMz2inCMSOuivMBxoTXX_2yeL2_264fq-eXh6d181w5Vpu54sINiGbIj0k0TggGzDndoXQMRUcVSmBSOGko6WknlUIqeso7cEob4JfF08LtA-zsFP0e4tEG8PbfIsQ3C3H2bkQrCVDR1dATCmLgAwyCaM4M41B3WqjM-r2wphjePzDNdhc-Yv51spxSKTVXymQVX1QuhpQiDv-vUmJP6dglHXtKx36lk12_FpdHxG8OTYTSNf8EDnyLZg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115573669</pqid></control><display><type>article</type><title>STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying</title><source>IEEE Xplore Open Access Journals</source><creator>Seol, Jaehwi ; Kim, Changjo ; Ju, Eunji ; Son, Hyoung Il</creator><creatorcontrib>Seol, Jaehwi ; Kim, Changjo ; Ju, Eunji ; Son, Hyoung Il</creatorcontrib><description>This study proposes a perception and analysis method for precise aerial spraying based on three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-temporal data are processed for the segmented point cloud data. The spray from each nozzle is clustered through spatial data processing, and clustering is based on this information. This approach allows each nozzle to be distinguished and mapped. Processing temporal data compensates for unsensed or noisy data points and predicts the water droplet trajectories, enhancing the spray data. This method more accurately measures the shape of water droplets. Experiments altering the flight conditions of unmanned aerial vehicles (UAVs) were conducted to assess the proposed framework, demonstrating that processing is feasible in the onboard system of the UAV. The proposed method has potential application in control systems for precise spraying in the future.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3473538</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerosols ; Autonomous aerial vehicles ; Clustering ; Clustering methods ; Control systems ; Crops ; Data acquisition ; Data points ; Data processing ; Deep learning ; Droplets ; Flight conditions ; grouping ; Laser radar ; Nozzles ; Onboard equipment ; Perception ; Pesticides ; precision aerial spraying ; Real-time systems ; Spatial data ; Spatial databases ; Spatial-temporal filtering ; Spatiotemporal data ; Spatiotemporal phenomena ; Spraying ; Target recognition ; Three dimensional analysis ; Three dimensional models ; Three-dimensional displays ; Unmanned aerial vehicles ; Water drops</subject><ispartof>IEEE access, 2024, Vol.12, p.145997-146008</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-34cfee9fe9f25e9c442a2cc7be5c2e4b16e5a254c5910d1b566e14d13bac679a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10704678$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Seol, Jaehwi</creatorcontrib><creatorcontrib>Kim, Changjo</creatorcontrib><creatorcontrib>Ju, Eunji</creatorcontrib><creatorcontrib>Son, Hyoung Il</creatorcontrib><title>STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying</title><title>IEEE access</title><addtitle>Access</addtitle><description>This study proposes a perception and analysis method for precise aerial spraying based on three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-temporal data are processed for the segmented point cloud data. The spray from each nozzle is clustered through spatial data processing, and clustering is based on this information. This approach allows each nozzle to be distinguished and mapped. Processing temporal data compensates for unsensed or noisy data points and predicts the water droplet trajectories, enhancing the spray data. This method more accurately measures the shape of water droplets. Experiments altering the flight conditions of unmanned aerial vehicles (UAVs) were conducted to assess the proposed framework, demonstrating that processing is feasible in the onboard system of the UAV. The proposed method has potential application in control systems for precise spraying in the future.</description><subject>Aerosols</subject><subject>Autonomous aerial vehicles</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Control systems</subject><subject>Crops</subject><subject>Data acquisition</subject><subject>Data points</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Droplets</subject><subject>Flight conditions</subject><subject>grouping</subject><subject>Laser radar</subject><subject>Nozzles</subject><subject>Onboard equipment</subject><subject>Perception</subject><subject>Pesticides</subject><subject>precision aerial spraying</subject><subject>Real-time systems</subject><subject>Spatial data</subject><subject>Spatial databases</subject><subject>Spatial-temporal filtering</subject><subject>Spatiotemporal data</subject><subject>Spatiotemporal phenomena</subject><subject>Spraying</subject><subject>Target recognition</subject><subject>Three dimensional analysis</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Unmanned aerial vehicles</subject><subject>Water drops</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtr4zAQhc3Swpa2v6D7YNhnZ3WXtW9u6A0KDTh9FmN5XBScyJXch_z7KuuydBDMMJzzDeIUxQ0lK0qJ-dOs13dtu2KEiRUXmkte_yguGFWmyrM6-zb_LK5T2pFcdV5JfVH07XbTtH_LdoLZw1htcT-FCGN578cZoz-8VbeQsC83GB1Osw-HEg592RxgPCafyvaYZtyXQ4jlJqLz6aRosjMz2inCMSOuivMBxoTXX_2yeL2_264fq-eXh6d181w5Vpu54sINiGbIj0k0TggGzDndoXQMRUcVSmBSOGko6WknlUIqeso7cEob4JfF08LtA-zsFP0e4tEG8PbfIsQ3C3H2bkQrCVDR1dATCmLgAwyCaM4M41B3WqjM-r2wphjePzDNdhc-Yv51spxSKTVXymQVX1QuhpQiDv-vUmJP6dglHXtKx36lk12_FpdHxG8OTYTSNf8EDnyLZg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Seol, Jaehwi</creator><creator>Kim, Changjo</creator><creator>Ju, Eunji</creator><creator>Son, Hyoung Il</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying</title><author>Seol, Jaehwi ; Kim, Changjo ; Ju, Eunji ; Son, Hyoung Il</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-34cfee9fe9f25e9c442a2cc7be5c2e4b16e5a254c5910d1b566e14d13bac679a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerosols</topic><topic>Autonomous aerial vehicles</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Control systems</topic><topic>Crops</topic><topic>Data acquisition</topic><topic>Data points</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Droplets</topic><topic>Flight conditions</topic><topic>grouping</topic><topic>Laser radar</topic><topic>Nozzles</topic><topic>Onboard equipment</topic><topic>Perception</topic><topic>Pesticides</topic><topic>precision aerial spraying</topic><topic>Real-time systems</topic><topic>Spatial data</topic><topic>Spatial databases</topic><topic>Spatial-temporal filtering</topic><topic>Spatiotemporal data</topic><topic>Spatiotemporal phenomena</topic><topic>Spraying</topic><topic>Target recognition</topic><topic>Three dimensional analysis</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Unmanned aerial vehicles</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seol, Jaehwi</creatorcontrib><creatorcontrib>Kim, Changjo</creatorcontrib><creatorcontrib>Ju, Eunji</creatorcontrib><creatorcontrib>Son, Hyoung Il</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seol, Jaehwi</au><au>Kim, Changjo</au><au>Ju, Eunji</au><au>Son, Hyoung Il</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>145997</spage><epage>146008</epage><pages>145997-146008</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This study proposes a perception and analysis method for precise aerial spraying based on three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-temporal data are processed for the segmented point cloud data. The spray from each nozzle is clustered through spatial data processing, and clustering is based on this information. This approach allows each nozzle to be distinguished and mapped. Processing temporal data compensates for unsensed or noisy data points and predicts the water droplet trajectories, enhancing the spray data. This method more accurately measures the shape of water droplets. Experiments altering the flight conditions of unmanned aerial vehicles (UAVs) were conducted to assess the proposed framework, demonstrating that processing is feasible in the onboard system of the UAV. The proposed method has potential application in control systems for precise spraying in the future.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3473538</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.145997-146008 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_50a14b8ad01a4f3faf40732923a8b746 |
source | IEEE Xplore Open Access Journals |
subjects | Aerosols Autonomous aerial vehicles Clustering Clustering methods Control systems Crops Data acquisition Data points Data processing Deep learning Droplets Flight conditions grouping Laser radar Nozzles Onboard equipment Perception Pesticides precision aerial spraying Real-time systems Spatial data Spatial databases Spatial-temporal filtering Spatiotemporal data Spatiotemporal phenomena Spraying Target recognition Three dimensional analysis Three dimensional models Three-dimensional displays Unmanned aerial vehicles Water drops |
title | STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STPAS:%20Spatial-Temporal%20Filtering-Based%20Perception%20and%20Analysis%20System%20for%20Precision%20Aerial%20Spraying&rft.jtitle=IEEE%20access&rft.au=Seol,%20Jaehwi&rft.date=2024&rft.volume=12&rft.spage=145997&rft.epage=146008&rft.pages=145997-146008&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3473538&rft_dat=%3Cproquest_doaj_%3E3115573669%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-34cfee9fe9f25e9c442a2cc7be5c2e4b16e5a254c5910d1b566e14d13bac679a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115573669&rft_id=info:pmid/&rft_ieee_id=10704678&rfr_iscdi=true |