Loading…

STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying

This study proposes a perception and analysis method for precise aerial spraying based on three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-tempor...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.145997-146008
Main Authors: Seol, Jaehwi, Kim, Changjo, Ju, Eunji, Son, Hyoung Il
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-34cfee9fe9f25e9c442a2cc7be5c2e4b16e5a254c5910d1b566e14d13bac679a3
container_end_page 146008
container_issue
container_start_page 145997
container_title IEEE access
container_volume 12
creator Seol, Jaehwi
Kim, Changjo
Ju, Eunji
Son, Hyoung Il
description This study proposes a perception and analysis method for precise aerial spraying based on three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-temporal data are processed for the segmented point cloud data. The spray from each nozzle is clustered through spatial data processing, and clustering is based on this information. This approach allows each nozzle to be distinguished and mapped. Processing temporal data compensates for unsensed or noisy data points and predicts the water droplet trajectories, enhancing the spray data. This method more accurately measures the shape of water droplets. Experiments altering the flight conditions of unmanned aerial vehicles (UAVs) were conducted to assess the proposed framework, demonstrating that processing is feasible in the onboard system of the UAV. The proposed method has potential application in control systems for precise spraying in the future.
doi_str_mv 10.1109/ACCESS.2024.3473538
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_50a14b8ad01a4f3faf40732923a8b746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10704678</ieee_id><doaj_id>oai_doaj_org_article_50a14b8ad01a4f3faf40732923a8b746</doaj_id><sourcerecordid>3115573669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-34cfee9fe9f25e9c442a2cc7be5c2e4b16e5a254c5910d1b566e14d13bac679a3</originalsourceid><addsrcrecordid>eNpNkVtr4zAQhc3Swpa2v6D7YNhnZ3WXtW9u6A0KDTh9FmN5XBScyJXch_z7KuuydBDMMJzzDeIUxQ0lK0qJ-dOs13dtu2KEiRUXmkte_yguGFWmyrM6-zb_LK5T2pFcdV5JfVH07XbTtH_LdoLZw1htcT-FCGN578cZoz-8VbeQsC83GB1Osw-HEg592RxgPCafyvaYZtyXQ4jlJqLz6aRosjMz2inCMSOuivMBxoTXX_2yeL2_264fq-eXh6d181w5Vpu54sINiGbIj0k0TggGzDndoXQMRUcVSmBSOGko6WknlUIqeso7cEob4JfF08LtA-zsFP0e4tEG8PbfIsQ3C3H2bkQrCVDR1dATCmLgAwyCaM4M41B3WqjM-r2wphjePzDNdhc-Yv51spxSKTVXymQVX1QuhpQiDv-vUmJP6dglHXtKx36lk12_FpdHxG8OTYTSNf8EDnyLZg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115573669</pqid></control><display><type>article</type><title>STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying</title><source>IEEE Xplore Open Access Journals</source><creator>Seol, Jaehwi ; Kim, Changjo ; Ju, Eunji ; Son, Hyoung Il</creator><creatorcontrib>Seol, Jaehwi ; Kim, Changjo ; Ju, Eunji ; Son, Hyoung Il</creatorcontrib><description>This study proposes a perception and analysis method for precise aerial spraying based on three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-temporal data are processed for the segmented point cloud data. The spray from each nozzle is clustered through spatial data processing, and clustering is based on this information. This approach allows each nozzle to be distinguished and mapped. Processing temporal data compensates for unsensed or noisy data points and predicts the water droplet trajectories, enhancing the spray data. This method more accurately measures the shape of water droplets. Experiments altering the flight conditions of unmanned aerial vehicles (UAVs) were conducted to assess the proposed framework, demonstrating that processing is feasible in the onboard system of the UAV. The proposed method has potential application in control systems for precise spraying in the future.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3473538</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerosols ; Autonomous aerial vehicles ; Clustering ; Clustering methods ; Control systems ; Crops ; Data acquisition ; Data points ; Data processing ; Deep learning ; Droplets ; Flight conditions ; grouping ; Laser radar ; Nozzles ; Onboard equipment ; Perception ; Pesticides ; precision aerial spraying ; Real-time systems ; Spatial data ; Spatial databases ; Spatial-temporal filtering ; Spatiotemporal data ; Spatiotemporal phenomena ; Spraying ; Target recognition ; Three dimensional analysis ; Three dimensional models ; Three-dimensional displays ; Unmanned aerial vehicles ; Water drops</subject><ispartof>IEEE access, 2024, Vol.12, p.145997-146008</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-34cfee9fe9f25e9c442a2cc7be5c2e4b16e5a254c5910d1b566e14d13bac679a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10704678$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Seol, Jaehwi</creatorcontrib><creatorcontrib>Kim, Changjo</creatorcontrib><creatorcontrib>Ju, Eunji</creatorcontrib><creatorcontrib>Son, Hyoung Il</creatorcontrib><title>STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying</title><title>IEEE access</title><addtitle>Access</addtitle><description>This study proposes a perception and analysis method for precise aerial spraying based on three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-temporal data are processed for the segmented point cloud data. The spray from each nozzle is clustered through spatial data processing, and clustering is based on this information. This approach allows each nozzle to be distinguished and mapped. Processing temporal data compensates for unsensed or noisy data points and predicts the water droplet trajectories, enhancing the spray data. This method more accurately measures the shape of water droplets. Experiments altering the flight conditions of unmanned aerial vehicles (UAVs) were conducted to assess the proposed framework, demonstrating that processing is feasible in the onboard system of the UAV. The proposed method has potential application in control systems for precise spraying in the future.</description><subject>Aerosols</subject><subject>Autonomous aerial vehicles</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Control systems</subject><subject>Crops</subject><subject>Data acquisition</subject><subject>Data points</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Droplets</subject><subject>Flight conditions</subject><subject>grouping</subject><subject>Laser radar</subject><subject>Nozzles</subject><subject>Onboard equipment</subject><subject>Perception</subject><subject>Pesticides</subject><subject>precision aerial spraying</subject><subject>Real-time systems</subject><subject>Spatial data</subject><subject>Spatial databases</subject><subject>Spatial-temporal filtering</subject><subject>Spatiotemporal data</subject><subject>Spatiotemporal phenomena</subject><subject>Spraying</subject><subject>Target recognition</subject><subject>Three dimensional analysis</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Unmanned aerial vehicles</subject><subject>Water drops</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtr4zAQhc3Swpa2v6D7YNhnZ3WXtW9u6A0KDTh9FmN5XBScyJXch_z7KuuydBDMMJzzDeIUxQ0lK0qJ-dOs13dtu2KEiRUXmkte_yguGFWmyrM6-zb_LK5T2pFcdV5JfVH07XbTtH_LdoLZw1htcT-FCGN578cZoz-8VbeQsC83GB1Osw-HEg592RxgPCafyvaYZtyXQ4jlJqLz6aRosjMz2inCMSOuivMBxoTXX_2yeL2_264fq-eXh6d181w5Vpu54sINiGbIj0k0TggGzDndoXQMRUcVSmBSOGko6WknlUIqeso7cEob4JfF08LtA-zsFP0e4tEG8PbfIsQ3C3H2bkQrCVDR1dATCmLgAwyCaM4M41B3WqjM-r2wphjePzDNdhc-Yv51spxSKTVXymQVX1QuhpQiDv-vUmJP6dglHXtKx36lk12_FpdHxG8OTYTSNf8EDnyLZg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Seol, Jaehwi</creator><creator>Kim, Changjo</creator><creator>Ju, Eunji</creator><creator>Son, Hyoung Il</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying</title><author>Seol, Jaehwi ; Kim, Changjo ; Ju, Eunji ; Son, Hyoung Il</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-34cfee9fe9f25e9c442a2cc7be5c2e4b16e5a254c5910d1b566e14d13bac679a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerosols</topic><topic>Autonomous aerial vehicles</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Control systems</topic><topic>Crops</topic><topic>Data acquisition</topic><topic>Data points</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Droplets</topic><topic>Flight conditions</topic><topic>grouping</topic><topic>Laser radar</topic><topic>Nozzles</topic><topic>Onboard equipment</topic><topic>Perception</topic><topic>Pesticides</topic><topic>precision aerial spraying</topic><topic>Real-time systems</topic><topic>Spatial data</topic><topic>Spatial databases</topic><topic>Spatial-temporal filtering</topic><topic>Spatiotemporal data</topic><topic>Spatiotemporal phenomena</topic><topic>Spraying</topic><topic>Target recognition</topic><topic>Three dimensional analysis</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Unmanned aerial vehicles</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seol, Jaehwi</creatorcontrib><creatorcontrib>Kim, Changjo</creatorcontrib><creatorcontrib>Ju, Eunji</creatorcontrib><creatorcontrib>Son, Hyoung Il</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seol, Jaehwi</au><au>Kim, Changjo</au><au>Ju, Eunji</au><au>Son, Hyoung Il</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>145997</spage><epage>146008</epage><pages>145997-146008</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This study proposes a perception and analysis method for precise aerial spraying based on three-dimensional (3D) deep learning. Point cloud data for water droplets are acquired using 3D LiDAR, and the PointNet++ deep learning model is trained to classify and segment the spray pattern. Spatial-temporal data are processed for the segmented point cloud data. The spray from each nozzle is clustered through spatial data processing, and clustering is based on this information. This approach allows each nozzle to be distinguished and mapped. Processing temporal data compensates for unsensed or noisy data points and predicts the water droplet trajectories, enhancing the spray data. This method more accurately measures the shape of water droplets. Experiments altering the flight conditions of unmanned aerial vehicles (UAVs) were conducted to assess the proposed framework, demonstrating that processing is feasible in the onboard system of the UAV. The proposed method has potential application in control systems for precise spraying in the future.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3473538</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.145997-146008
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_50a14b8ad01a4f3faf40732923a8b746
source IEEE Xplore Open Access Journals
subjects Aerosols
Autonomous aerial vehicles
Clustering
Clustering methods
Control systems
Crops
Data acquisition
Data points
Data processing
Deep learning
Droplets
Flight conditions
grouping
Laser radar
Nozzles
Onboard equipment
Perception
Pesticides
precision aerial spraying
Real-time systems
Spatial data
Spatial databases
Spatial-temporal filtering
Spatiotemporal data
Spatiotemporal phenomena
Spraying
Target recognition
Three dimensional analysis
Three dimensional models
Three-dimensional displays
Unmanned aerial vehicles
Water drops
title STPAS: Spatial-Temporal Filtering-Based Perception and Analysis System for Precision Aerial Spraying
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STPAS:%20Spatial-Temporal%20Filtering-Based%20Perception%20and%20Analysis%20System%20for%20Precision%20Aerial%20Spraying&rft.jtitle=IEEE%20access&rft.au=Seol,%20Jaehwi&rft.date=2024&rft.volume=12&rft.spage=145997&rft.epage=146008&rft.pages=145997-146008&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3473538&rft_dat=%3Cproquest_doaj_%3E3115573669%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-34cfee9fe9f25e9c442a2cc7be5c2e4b16e5a254c5910d1b566e14d13bac679a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115573669&rft_id=info:pmid/&rft_ieee_id=10704678&rfr_iscdi=true