Loading…
An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field
The results of an experimental study of micro-jets produced with a gas dynamic virtual nozzle (GDVN) under the influence of an electric field are provided and discussed for the first time. The experimental study is performed with a 50% volume mixture of water and ethanol, and nitrogen focusing gas....
Saved in:
Published in: | Frontiers in molecular biosciences 2023-01, Vol.10, p.1006733 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3 |
container_end_page | |
container_issue | |
container_start_page | 1006733 |
container_title | Frontiers in molecular biosciences |
container_volume | 10 |
creator | Zupan, Bor Peña-Murillo, Gisel Esperanza Zahoor, Rizwan Gregorc, Jurij Šarler, Božidar Knoška, Juraj Gañán-Calvo, Alfonso M Chapman, Henry N Bajt, Saša |
description | The results of an experimental study of micro-jets produced with a gas dynamic virtual nozzle (GDVN) under the influence of an electric field are provided and discussed for the first time. The experimental study is performed with a 50% volume mixture of water and ethanol, and nitrogen focusing gas. The liquid sample and gas Reynolds numbers range from 0.09-5.4 and 0-190, respectively. The external electrode was positioned 400-500 μm downstream of the nozzle tip and an effect of electric potential between the electrode and the sample liquid from 0-7 kV was investigated. The jetting parametric space is examined as a function of operating gas and liquid flow rates, outlet chamber pressure, and an external electric field. The experimentally observed jet diameter, length and velocity ranged from 1-25 μm, 50-500 μm and 0.5-10 m/s, respectively. The jetting shape snapshots were processed automatically using purposely developed computer vision software. The velocity of the jet was calculated from the measured jet diameter and the sample flow rate. It is found that micro-jets accelerate in the direction of the applied electric field in the downstream direction at a constant acceleration as opposed to the standard GDVNs. New jetting modes were observed, where either the focusing gas or the electric forces dominate, encouraging further theoretical and numerical studies towards optimized system design. The study shows the potential to unlock a new generation of low background sample delivery for serial diffraction measurements of weakly scattering objects. |
doi_str_mv | 10.3389/fmolb.2023.1006733 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_50a27200796a4ec6b7650707e2e7eeaa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_50a27200796a4ec6b7650707e2e7eeaa</doaj_id><sourcerecordid>2773717651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3</originalsourceid><addsrcrecordid>eNpVkj9v2zAQxYWiRROk-QIdCo5d5PCfSGkpEARNGyBAlwzdiJN4smnQokNSaZ2hn7107ATJROJ47_dI3quqz4wuhGi7i3ETfL_glIsFo1RpId5Vp5x3qm7b7vf7V_uT6jylNaWUNVRoJT9WJ0JpKTiTp9W_y4ng3y1Gt8Epgycpz3ZHwki8u5-dJRs3xFCvMSeyjcHOA1ryx-UVAbKEROxugtJCHlzMc5FP4fHRI5kni5HkFRI3jX7GacA9E4qZxyHHohgdevup-jCCT3h-XM-qu-vvd1c_69tfP26uLm_rQao210zLno1NoygyQCU7ilxwbDgdmJTYCCHAilZx6CVXjHcgG1aqTQeMIYiz6uaAtQHWZlseC3FnAjjzVAhxaSBmN3g0DQWuOaW6UyBxUL1WDdVUI0eNCHvWtwNrO_cbtEP5tgj-DfTtyeRWZhkeTNd2nDaqAL4eATHcz5iy2bg0oPcwYZiT4VoLzYotK6380FpmkFLE8cWGUbOPgXmKgdnHwBxjUERfXl_wRfI8dPEfKcuwhQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773717651</pqid></control><display><type>article</type><title>An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field</title><source>Open Access: PubMed Central</source><creator>Zupan, Bor ; Peña-Murillo, Gisel Esperanza ; Zahoor, Rizwan ; Gregorc, Jurij ; Šarler, Božidar ; Knoška, Juraj ; Gañán-Calvo, Alfonso M ; Chapman, Henry N ; Bajt, Saša</creator><creatorcontrib>Zupan, Bor ; Peña-Murillo, Gisel Esperanza ; Zahoor, Rizwan ; Gregorc, Jurij ; Šarler, Božidar ; Knoška, Juraj ; Gañán-Calvo, Alfonso M ; Chapman, Henry N ; Bajt, Saša</creatorcontrib><description>The results of an experimental study of micro-jets produced with a gas dynamic virtual nozzle (GDVN) under the influence of an electric field are provided and discussed for the first time. The experimental study is performed with a 50% volume mixture of water and ethanol, and nitrogen focusing gas. The liquid sample and gas Reynolds numbers range from 0.09-5.4 and 0-190, respectively. The external electrode was positioned 400-500 μm downstream of the nozzle tip and an effect of electric potential between the electrode and the sample liquid from 0-7 kV was investigated. The jetting parametric space is examined as a function of operating gas and liquid flow rates, outlet chamber pressure, and an external electric field. The experimentally observed jet diameter, length and velocity ranged from 1-25 μm, 50-500 μm and 0.5-10 m/s, respectively. The jetting shape snapshots were processed automatically using purposely developed computer vision software. The velocity of the jet was calculated from the measured jet diameter and the sample flow rate. It is found that micro-jets accelerate in the direction of the applied electric field in the downstream direction at a constant acceleration as opposed to the standard GDVNs. New jetting modes were observed, where either the focusing gas or the electric forces dominate, encouraging further theoretical and numerical studies towards optimized system design. The study shows the potential to unlock a new generation of low background sample delivery for serial diffraction measurements of weakly scattering objects.</description><identifier>ISSN: 2296-889X</identifier><identifier>EISSN: 2296-889X</identifier><identifier>DOI: 10.3389/fmolb.2023.1006733</identifier><identifier>PMID: 36743214</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>electric field ; experimental study ; flow-focusing ; gas dynamic virtual nozzle ; jetting modes ; micro-jet ; Molecular Biosciences</subject><ispartof>Frontiers in molecular biosciences, 2023-01, Vol.10, p.1006733</ispartof><rights>Copyright © 2023 Zupan, Peña-Murillo, Zahoor, Gregorc, Šarler, Knoška, Gañán-Calvo, Chapman and Bajt.</rights><rights>Copyright © 2023 Zupan, Peña-Murillo, Zahoor, Gregorc, Šarler, Knoška, Gañán-Calvo, Chapman and Bajt. 2023 Zupan, Peña-Murillo, Zahoor, Gregorc, Šarler, Knoška, Gañán-Calvo, Chapman and Bajt</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3</citedby><cites>FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892056/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892056/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36743214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zupan, Bor</creatorcontrib><creatorcontrib>Peña-Murillo, Gisel Esperanza</creatorcontrib><creatorcontrib>Zahoor, Rizwan</creatorcontrib><creatorcontrib>Gregorc, Jurij</creatorcontrib><creatorcontrib>Šarler, Božidar</creatorcontrib><creatorcontrib>Knoška, Juraj</creatorcontrib><creatorcontrib>Gañán-Calvo, Alfonso M</creatorcontrib><creatorcontrib>Chapman, Henry N</creatorcontrib><creatorcontrib>Bajt, Saša</creatorcontrib><title>An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field</title><title>Frontiers in molecular biosciences</title><addtitle>Front Mol Biosci</addtitle><description>The results of an experimental study of micro-jets produced with a gas dynamic virtual nozzle (GDVN) under the influence of an electric field are provided and discussed for the first time. The experimental study is performed with a 50% volume mixture of water and ethanol, and nitrogen focusing gas. The liquid sample and gas Reynolds numbers range from 0.09-5.4 and 0-190, respectively. The external electrode was positioned 400-500 μm downstream of the nozzle tip and an effect of electric potential between the electrode and the sample liquid from 0-7 kV was investigated. The jetting parametric space is examined as a function of operating gas and liquid flow rates, outlet chamber pressure, and an external electric field. The experimentally observed jet diameter, length and velocity ranged from 1-25 μm, 50-500 μm and 0.5-10 m/s, respectively. The jetting shape snapshots were processed automatically using purposely developed computer vision software. The velocity of the jet was calculated from the measured jet diameter and the sample flow rate. It is found that micro-jets accelerate in the direction of the applied electric field in the downstream direction at a constant acceleration as opposed to the standard GDVNs. New jetting modes were observed, where either the focusing gas or the electric forces dominate, encouraging further theoretical and numerical studies towards optimized system design. The study shows the potential to unlock a new generation of low background sample delivery for serial diffraction measurements of weakly scattering objects.</description><subject>electric field</subject><subject>experimental study</subject><subject>flow-focusing</subject><subject>gas dynamic virtual nozzle</subject><subject>jetting modes</subject><subject>micro-jet</subject><subject>Molecular Biosciences</subject><issn>2296-889X</issn><issn>2296-889X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkj9v2zAQxYWiRROk-QIdCo5d5PCfSGkpEARNGyBAlwzdiJN4smnQokNSaZ2hn7107ATJROJ47_dI3quqz4wuhGi7i3ETfL_glIsFo1RpId5Vp5x3qm7b7vf7V_uT6jylNaWUNVRoJT9WJ0JpKTiTp9W_y4ng3y1Gt8Epgycpz3ZHwki8u5-dJRs3xFCvMSeyjcHOA1ryx-UVAbKEROxugtJCHlzMc5FP4fHRI5kni5HkFRI3jX7GacA9E4qZxyHHohgdevup-jCCT3h-XM-qu-vvd1c_69tfP26uLm_rQao210zLno1NoygyQCU7ilxwbDgdmJTYCCHAilZx6CVXjHcgG1aqTQeMIYiz6uaAtQHWZlseC3FnAjjzVAhxaSBmN3g0DQWuOaW6UyBxUL1WDdVUI0eNCHvWtwNrO_cbtEP5tgj-DfTtyeRWZhkeTNd2nDaqAL4eATHcz5iy2bg0oPcwYZiT4VoLzYotK6380FpmkFLE8cWGUbOPgXmKgdnHwBxjUERfXl_wRfI8dPEfKcuwhQ</recordid><startdate>20230119</startdate><enddate>20230119</enddate><creator>Zupan, Bor</creator><creator>Peña-Murillo, Gisel Esperanza</creator><creator>Zahoor, Rizwan</creator><creator>Gregorc, Jurij</creator><creator>Šarler, Božidar</creator><creator>Knoška, Juraj</creator><creator>Gañán-Calvo, Alfonso M</creator><creator>Chapman, Henry N</creator><creator>Bajt, Saša</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230119</creationdate><title>An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field</title><author>Zupan, Bor ; Peña-Murillo, Gisel Esperanza ; Zahoor, Rizwan ; Gregorc, Jurij ; Šarler, Božidar ; Knoška, Juraj ; Gañán-Calvo, Alfonso M ; Chapman, Henry N ; Bajt, Saša</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>electric field</topic><topic>experimental study</topic><topic>flow-focusing</topic><topic>gas dynamic virtual nozzle</topic><topic>jetting modes</topic><topic>micro-jet</topic><topic>Molecular Biosciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zupan, Bor</creatorcontrib><creatorcontrib>Peña-Murillo, Gisel Esperanza</creatorcontrib><creatorcontrib>Zahoor, Rizwan</creatorcontrib><creatorcontrib>Gregorc, Jurij</creatorcontrib><creatorcontrib>Šarler, Božidar</creatorcontrib><creatorcontrib>Knoška, Juraj</creatorcontrib><creatorcontrib>Gañán-Calvo, Alfonso M</creatorcontrib><creatorcontrib>Chapman, Henry N</creatorcontrib><creatorcontrib>Bajt, Saša</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Frontiers in molecular biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zupan, Bor</au><au>Peña-Murillo, Gisel Esperanza</au><au>Zahoor, Rizwan</au><au>Gregorc, Jurij</au><au>Šarler, Božidar</au><au>Knoška, Juraj</au><au>Gañán-Calvo, Alfonso M</au><au>Chapman, Henry N</au><au>Bajt, Saša</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field</atitle><jtitle>Frontiers in molecular biosciences</jtitle><addtitle>Front Mol Biosci</addtitle><date>2023-01-19</date><risdate>2023</risdate><volume>10</volume><spage>1006733</spage><pages>1006733-</pages><issn>2296-889X</issn><eissn>2296-889X</eissn><abstract>The results of an experimental study of micro-jets produced with a gas dynamic virtual nozzle (GDVN) under the influence of an electric field are provided and discussed for the first time. The experimental study is performed with a 50% volume mixture of water and ethanol, and nitrogen focusing gas. The liquid sample and gas Reynolds numbers range from 0.09-5.4 and 0-190, respectively. The external electrode was positioned 400-500 μm downstream of the nozzle tip and an effect of electric potential between the electrode and the sample liquid from 0-7 kV was investigated. The jetting parametric space is examined as a function of operating gas and liquid flow rates, outlet chamber pressure, and an external electric field. The experimentally observed jet diameter, length and velocity ranged from 1-25 μm, 50-500 μm and 0.5-10 m/s, respectively. The jetting shape snapshots were processed automatically using purposely developed computer vision software. The velocity of the jet was calculated from the measured jet diameter and the sample flow rate. It is found that micro-jets accelerate in the direction of the applied electric field in the downstream direction at a constant acceleration as opposed to the standard GDVNs. New jetting modes were observed, where either the focusing gas or the electric forces dominate, encouraging further theoretical and numerical studies towards optimized system design. The study shows the potential to unlock a new generation of low background sample delivery for serial diffraction measurements of weakly scattering objects.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>36743214</pmid><doi>10.3389/fmolb.2023.1006733</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-889X |
ispartof | Frontiers in molecular biosciences, 2023-01, Vol.10, p.1006733 |
issn | 2296-889X 2296-889X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_50a27200796a4ec6b7650707e2e7eeaa |
source | Open Access: PubMed Central |
subjects | electric field experimental study flow-focusing gas dynamic virtual nozzle jetting modes micro-jet Molecular Biosciences |
title | An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20study%20of%20liquid%20micro-jets%20produced%20with%20a%20gas%20dynamic%20virtual%20nozzle%20under%20the%20influence%20of%20an%20electric%20field&rft.jtitle=Frontiers%20in%20molecular%20biosciences&rft.au=Zupan,%20Bor&rft.date=2023-01-19&rft.volume=10&rft.spage=1006733&rft.pages=1006733-&rft.issn=2296-889X&rft.eissn=2296-889X&rft_id=info:doi/10.3389/fmolb.2023.1006733&rft_dat=%3Cproquest_doaj_%3E2773717651%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773717651&rft_id=info:pmid/36743214&rfr_iscdi=true |