Loading…

An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field

The results of an experimental study of micro-jets produced with a gas dynamic virtual nozzle (GDVN) under the influence of an electric field are provided and discussed for the first time. The experimental study is performed with a 50% volume mixture of water and ethanol, and nitrogen focusing gas....

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in molecular biosciences 2023-01, Vol.10, p.1006733
Main Authors: Zupan, Bor, Peña-Murillo, Gisel Esperanza, Zahoor, Rizwan, Gregorc, Jurij, Šarler, Božidar, Knoška, Juraj, Gañán-Calvo, Alfonso M, Chapman, Henry N, Bajt, Saša
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3
cites cdi_FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3
container_end_page
container_issue
container_start_page 1006733
container_title Frontiers in molecular biosciences
container_volume 10
creator Zupan, Bor
Peña-Murillo, Gisel Esperanza
Zahoor, Rizwan
Gregorc, Jurij
Šarler, Božidar
Knoška, Juraj
Gañán-Calvo, Alfonso M
Chapman, Henry N
Bajt, Saša
description The results of an experimental study of micro-jets produced with a gas dynamic virtual nozzle (GDVN) under the influence of an electric field are provided and discussed for the first time. The experimental study is performed with a 50% volume mixture of water and ethanol, and nitrogen focusing gas. The liquid sample and gas Reynolds numbers range from 0.09-5.4 and 0-190, respectively. The external electrode was positioned 400-500 μm downstream of the nozzle tip and an effect of electric potential between the electrode and the sample liquid from 0-7 kV was investigated. The jetting parametric space is examined as a function of operating gas and liquid flow rates, outlet chamber pressure, and an external electric field. The experimentally observed jet diameter, length and velocity ranged from 1-25 μm, 50-500 μm and 0.5-10 m/s, respectively. The jetting shape snapshots were processed automatically using purposely developed computer vision software. The velocity of the jet was calculated from the measured jet diameter and the sample flow rate. It is found that micro-jets accelerate in the direction of the applied electric field in the downstream direction at a constant acceleration as opposed to the standard GDVNs. New jetting modes were observed, where either the focusing gas or the electric forces dominate, encouraging further theoretical and numerical studies towards optimized system design. The study shows the potential to unlock a new generation of low background sample delivery for serial diffraction measurements of weakly scattering objects.
doi_str_mv 10.3389/fmolb.2023.1006733
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_50a27200796a4ec6b7650707e2e7eeaa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_50a27200796a4ec6b7650707e2e7eeaa</doaj_id><sourcerecordid>2773717651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3</originalsourceid><addsrcrecordid>eNpVkj9v2zAQxYWiRROk-QIdCo5d5PCfSGkpEARNGyBAlwzdiJN4smnQokNSaZ2hn7107ATJROJ47_dI3quqz4wuhGi7i3ETfL_glIsFo1RpId5Vp5x3qm7b7vf7V_uT6jylNaWUNVRoJT9WJ0JpKTiTp9W_y4ng3y1Gt8Epgycpz3ZHwki8u5-dJRs3xFCvMSeyjcHOA1ryx-UVAbKEROxugtJCHlzMc5FP4fHRI5kni5HkFRI3jX7GacA9E4qZxyHHohgdevup-jCCT3h-XM-qu-vvd1c_69tfP26uLm_rQao210zLno1NoygyQCU7ilxwbDgdmJTYCCHAilZx6CVXjHcgG1aqTQeMIYiz6uaAtQHWZlseC3FnAjjzVAhxaSBmN3g0DQWuOaW6UyBxUL1WDdVUI0eNCHvWtwNrO_cbtEP5tgj-DfTtyeRWZhkeTNd2nDaqAL4eATHcz5iy2bg0oPcwYZiT4VoLzYotK6380FpmkFLE8cWGUbOPgXmKgdnHwBxjUERfXl_wRfI8dPEfKcuwhQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773717651</pqid></control><display><type>article</type><title>An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field</title><source>Open Access: PubMed Central</source><creator>Zupan, Bor ; Peña-Murillo, Gisel Esperanza ; Zahoor, Rizwan ; Gregorc, Jurij ; Šarler, Božidar ; Knoška, Juraj ; Gañán-Calvo, Alfonso M ; Chapman, Henry N ; Bajt, Saša</creator><creatorcontrib>Zupan, Bor ; Peña-Murillo, Gisel Esperanza ; Zahoor, Rizwan ; Gregorc, Jurij ; Šarler, Božidar ; Knoška, Juraj ; Gañán-Calvo, Alfonso M ; Chapman, Henry N ; Bajt, Saša</creatorcontrib><description>The results of an experimental study of micro-jets produced with a gas dynamic virtual nozzle (GDVN) under the influence of an electric field are provided and discussed for the first time. The experimental study is performed with a 50% volume mixture of water and ethanol, and nitrogen focusing gas. The liquid sample and gas Reynolds numbers range from 0.09-5.4 and 0-190, respectively. The external electrode was positioned 400-500 μm downstream of the nozzle tip and an effect of electric potential between the electrode and the sample liquid from 0-7 kV was investigated. The jetting parametric space is examined as a function of operating gas and liquid flow rates, outlet chamber pressure, and an external electric field. The experimentally observed jet diameter, length and velocity ranged from 1-25 μm, 50-500 μm and 0.5-10 m/s, respectively. The jetting shape snapshots were processed automatically using purposely developed computer vision software. The velocity of the jet was calculated from the measured jet diameter and the sample flow rate. It is found that micro-jets accelerate in the direction of the applied electric field in the downstream direction at a constant acceleration as opposed to the standard GDVNs. New jetting modes were observed, where either the focusing gas or the electric forces dominate, encouraging further theoretical and numerical studies towards optimized system design. The study shows the potential to unlock a new generation of low background sample delivery for serial diffraction measurements of weakly scattering objects.</description><identifier>ISSN: 2296-889X</identifier><identifier>EISSN: 2296-889X</identifier><identifier>DOI: 10.3389/fmolb.2023.1006733</identifier><identifier>PMID: 36743214</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>electric field ; experimental study ; flow-focusing ; gas dynamic virtual nozzle ; jetting modes ; micro-jet ; Molecular Biosciences</subject><ispartof>Frontiers in molecular biosciences, 2023-01, Vol.10, p.1006733</ispartof><rights>Copyright © 2023 Zupan, Peña-Murillo, Zahoor, Gregorc, Šarler, Knoška, Gañán-Calvo, Chapman and Bajt.</rights><rights>Copyright © 2023 Zupan, Peña-Murillo, Zahoor, Gregorc, Šarler, Knoška, Gañán-Calvo, Chapman and Bajt. 2023 Zupan, Peña-Murillo, Zahoor, Gregorc, Šarler, Knoška, Gañán-Calvo, Chapman and Bajt</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3</citedby><cites>FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892056/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9892056/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36743214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zupan, Bor</creatorcontrib><creatorcontrib>Peña-Murillo, Gisel Esperanza</creatorcontrib><creatorcontrib>Zahoor, Rizwan</creatorcontrib><creatorcontrib>Gregorc, Jurij</creatorcontrib><creatorcontrib>Šarler, Božidar</creatorcontrib><creatorcontrib>Knoška, Juraj</creatorcontrib><creatorcontrib>Gañán-Calvo, Alfonso M</creatorcontrib><creatorcontrib>Chapman, Henry N</creatorcontrib><creatorcontrib>Bajt, Saša</creatorcontrib><title>An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field</title><title>Frontiers in molecular biosciences</title><addtitle>Front Mol Biosci</addtitle><description>The results of an experimental study of micro-jets produced with a gas dynamic virtual nozzle (GDVN) under the influence of an electric field are provided and discussed for the first time. The experimental study is performed with a 50% volume mixture of water and ethanol, and nitrogen focusing gas. The liquid sample and gas Reynolds numbers range from 0.09-5.4 and 0-190, respectively. The external electrode was positioned 400-500 μm downstream of the nozzle tip and an effect of electric potential between the electrode and the sample liquid from 0-7 kV was investigated. The jetting parametric space is examined as a function of operating gas and liquid flow rates, outlet chamber pressure, and an external electric field. The experimentally observed jet diameter, length and velocity ranged from 1-25 μm, 50-500 μm and 0.5-10 m/s, respectively. The jetting shape snapshots were processed automatically using purposely developed computer vision software. The velocity of the jet was calculated from the measured jet diameter and the sample flow rate. It is found that micro-jets accelerate in the direction of the applied electric field in the downstream direction at a constant acceleration as opposed to the standard GDVNs. New jetting modes were observed, where either the focusing gas or the electric forces dominate, encouraging further theoretical and numerical studies towards optimized system design. The study shows the potential to unlock a new generation of low background sample delivery for serial diffraction measurements of weakly scattering objects.</description><subject>electric field</subject><subject>experimental study</subject><subject>flow-focusing</subject><subject>gas dynamic virtual nozzle</subject><subject>jetting modes</subject><subject>micro-jet</subject><subject>Molecular Biosciences</subject><issn>2296-889X</issn><issn>2296-889X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkj9v2zAQxYWiRROk-QIdCo5d5PCfSGkpEARNGyBAlwzdiJN4smnQokNSaZ2hn7107ATJROJ47_dI3quqz4wuhGi7i3ETfL_glIsFo1RpId5Vp5x3qm7b7vf7V_uT6jylNaWUNVRoJT9WJ0JpKTiTp9W_y4ng3y1Gt8Epgycpz3ZHwki8u5-dJRs3xFCvMSeyjcHOA1ryx-UVAbKEROxugtJCHlzMc5FP4fHRI5kni5HkFRI3jX7GacA9E4qZxyHHohgdevup-jCCT3h-XM-qu-vvd1c_69tfP26uLm_rQao210zLno1NoygyQCU7ilxwbDgdmJTYCCHAilZx6CVXjHcgG1aqTQeMIYiz6uaAtQHWZlseC3FnAjjzVAhxaSBmN3g0DQWuOaW6UyBxUL1WDdVUI0eNCHvWtwNrO_cbtEP5tgj-DfTtyeRWZhkeTNd2nDaqAL4eATHcz5iy2bg0oPcwYZiT4VoLzYotK6380FpmkFLE8cWGUbOPgXmKgdnHwBxjUERfXl_wRfI8dPEfKcuwhQ</recordid><startdate>20230119</startdate><enddate>20230119</enddate><creator>Zupan, Bor</creator><creator>Peña-Murillo, Gisel Esperanza</creator><creator>Zahoor, Rizwan</creator><creator>Gregorc, Jurij</creator><creator>Šarler, Božidar</creator><creator>Knoška, Juraj</creator><creator>Gañán-Calvo, Alfonso M</creator><creator>Chapman, Henry N</creator><creator>Bajt, Saša</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230119</creationdate><title>An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field</title><author>Zupan, Bor ; Peña-Murillo, Gisel Esperanza ; Zahoor, Rizwan ; Gregorc, Jurij ; Šarler, Božidar ; Knoška, Juraj ; Gañán-Calvo, Alfonso M ; Chapman, Henry N ; Bajt, Saša</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>electric field</topic><topic>experimental study</topic><topic>flow-focusing</topic><topic>gas dynamic virtual nozzle</topic><topic>jetting modes</topic><topic>micro-jet</topic><topic>Molecular Biosciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zupan, Bor</creatorcontrib><creatorcontrib>Peña-Murillo, Gisel Esperanza</creatorcontrib><creatorcontrib>Zahoor, Rizwan</creatorcontrib><creatorcontrib>Gregorc, Jurij</creatorcontrib><creatorcontrib>Šarler, Božidar</creatorcontrib><creatorcontrib>Knoška, Juraj</creatorcontrib><creatorcontrib>Gañán-Calvo, Alfonso M</creatorcontrib><creatorcontrib>Chapman, Henry N</creatorcontrib><creatorcontrib>Bajt, Saša</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Frontiers in molecular biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zupan, Bor</au><au>Peña-Murillo, Gisel Esperanza</au><au>Zahoor, Rizwan</au><au>Gregorc, Jurij</au><au>Šarler, Božidar</au><au>Knoška, Juraj</au><au>Gañán-Calvo, Alfonso M</au><au>Chapman, Henry N</au><au>Bajt, Saša</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field</atitle><jtitle>Frontiers in molecular biosciences</jtitle><addtitle>Front Mol Biosci</addtitle><date>2023-01-19</date><risdate>2023</risdate><volume>10</volume><spage>1006733</spage><pages>1006733-</pages><issn>2296-889X</issn><eissn>2296-889X</eissn><abstract>The results of an experimental study of micro-jets produced with a gas dynamic virtual nozzle (GDVN) under the influence of an electric field are provided and discussed for the first time. The experimental study is performed with a 50% volume mixture of water and ethanol, and nitrogen focusing gas. The liquid sample and gas Reynolds numbers range from 0.09-5.4 and 0-190, respectively. The external electrode was positioned 400-500 μm downstream of the nozzle tip and an effect of electric potential between the electrode and the sample liquid from 0-7 kV was investigated. The jetting parametric space is examined as a function of operating gas and liquid flow rates, outlet chamber pressure, and an external electric field. The experimentally observed jet diameter, length and velocity ranged from 1-25 μm, 50-500 μm and 0.5-10 m/s, respectively. The jetting shape snapshots were processed automatically using purposely developed computer vision software. The velocity of the jet was calculated from the measured jet diameter and the sample flow rate. It is found that micro-jets accelerate in the direction of the applied electric field in the downstream direction at a constant acceleration as opposed to the standard GDVNs. New jetting modes were observed, where either the focusing gas or the electric forces dominate, encouraging further theoretical and numerical studies towards optimized system design. The study shows the potential to unlock a new generation of low background sample delivery for serial diffraction measurements of weakly scattering objects.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>36743214</pmid><doi>10.3389/fmolb.2023.1006733</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-889X
ispartof Frontiers in molecular biosciences, 2023-01, Vol.10, p.1006733
issn 2296-889X
2296-889X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_50a27200796a4ec6b7650707e2e7eeaa
source Open Access: PubMed Central
subjects electric field
experimental study
flow-focusing
gas dynamic virtual nozzle
jetting modes
micro-jet
Molecular Biosciences
title An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20study%20of%20liquid%20micro-jets%20produced%20with%20a%20gas%20dynamic%20virtual%20nozzle%20under%20the%20influence%20of%20an%20electric%20field&rft.jtitle=Frontiers%20in%20molecular%20biosciences&rft.au=Zupan,%20Bor&rft.date=2023-01-19&rft.volume=10&rft.spage=1006733&rft.pages=1006733-&rft.issn=2296-889X&rft.eissn=2296-889X&rft_id=info:doi/10.3389/fmolb.2023.1006733&rft_dat=%3Cproquest_doaj_%3E2773717651%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-174b1f5560e1ae6490e232e520c144e5333ad3862ab426129a45153359a11ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773717651&rft_id=info:pmid/36743214&rfr_iscdi=true