Loading…
A data‐driven inertia adequacy‐based approach for sustainable expansion planning in distributed generations‐penetrated power grids
Reduced rotational inertia in power grids due to increasing penetration levels of distributed generations (DGs) may lead to degraded performance of the traditional frequency control scheme. In response to this challenge, inertia adequacy has recently emerged as a new research area in modern power sy...
Saved in:
Published in: | IET generation, transmission & distribution transmission & distribution, 2022-11, Vol.16 (22), p.4614-4629 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reduced rotational inertia in power grids due to increasing penetration levels of distributed generations (DGs) may lead to degraded performance of the traditional frequency control scheme. In response to this challenge, inertia adequacy has recently emerged as a new research area in modern power systems. Accordingly, an attempt is made in this paper to tackle inertia adequacy in the generation expansion planning (GEP) problem. This in turn helps to realize sustainable economic development. For this purpose, the inertia adequacy constraint is tied to the frequency stability metrics. In other words, minimum permissible inertia that satisfies frequency dynamic standards is defined as an inertia adequacy constraint in the GEP formulation. Further, an experimentally validated model of a cluster of DGs is employed to realize a penetrated power grid to deal with sustainable planning development. Finally, an iterative‐based algorithm is proposed to expand the system with minimum cost and with the highest permissible penetration level of DGs. The effectiveness of the proposed algorithm is examined in the Garver test system. |
---|---|
ISSN: | 1751-8687 1751-8695 |
DOI: | 10.1049/gtd2.12626 |