Loading…
Robust estimation of dementia prevalence from two-phase surveys with non-responders via propensity score stratification
Missing diagnoses are common in cross-sectional studies of dementia, and this missingness is usually related to whether the respondent has dementia or not. Failure to properly address this issue can lead to underestimation of prevalence. To obtain accurate prevalence estimates, we propose different...
Saved in:
Published in: | BMC medical research methodology 2023-05, Vol.23 (1), p.130-130, Article 130 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023 |
---|---|
cites | cdi_FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023 |
container_end_page | 130 |
container_issue | 1 |
container_start_page | 130 |
container_title | BMC medical research methodology |
container_volume | 23 |
creator | Shen, Chong Pei, Minyue Wang, Xiaoxiao Zhao, Yiming Wang, Luning Tan, Jiping Deng, Ke Li, Nan |
description | Missing diagnoses are common in cross-sectional studies of dementia, and this missingness is usually related to whether the respondent has dementia or not. Failure to properly address this issue can lead to underestimation of prevalence. To obtain accurate prevalence estimates, we propose different estimation methods within the framework of propensity score stratification (PSS), which can significantly reduce the negative impact of non-response on prevalence estimates.
To obtain accurate estimates of dementia prevalence, we calculated the propensity score (PS) of each participant to be a non-responder using logistic regression with demographic information, cognitive tests and physical function variables as covariates. We then divided all participants into five equal-sized strata based on their PS. The stratum-specific prevalence of dementia was estimated using simple estimation (SE), regression estimation (RE), and regression estimation with multiple imputation (REMI). These stratum-specific estimates were integrated to obtain an overall estimate of dementia prevalence.
The estimated prevalence of dementia using SE, RE, and REMI with PSS was 12.24%, 12.28%, and 12.20%, respectively. These estimates showed higher consistency than the estimates obtained without PSS, which were 11.64%, 12.33%, and 11.98%, respectively. Furthermore, considering only the observed diagnoses, the prevalence in the same group was found to be 9.95%, which is significantly lower than the prevalence estimated by our proposed method. This suggested that prevalence estimates obtained without properly accounting for missing data might underestimate the true prevalence.
Estimating the prevalence of dementia using the PSS provides a more robust and less biased estimate. |
doi_str_mv | 10.1186/s12874-023-01954-0 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_50deb49de14342538ee94459b4ffe27d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750882415</galeid><doaj_id>oai_doaj_org_article_50deb49de14342538ee94459b4ffe27d</doaj_id><sourcerecordid>A750882415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023</originalsourceid><addsrcrecordid>eNptUk1vEzEQXSEQLYE_wAFZ4sJli7829p5QVfFRqRISgrPltceJo4292LuJ8u_rTUppEPLBo_F7bzxvpqreEnxFiFx-zIRKwWtMWY1J25ToWXVJuCA1pVI-fxJfVK9y3mBMhGTLl9UFE5QJJtlltf8RuymPCPLot3r0MaDokIUthNFrNCTY6R6CAeRS3KJxH-thrTOgPKUdHDLa-3GNQgx1gjzEYCFltDsy4wAh-_GAsompEMZU9J03xyqvqxdO9xnePNyL6teXzz9vvtV337_e3lzf1aZZ8rFmnIPAVGNNWtBUkKazruO20dY0lmDbUaI1c5oLy4TkjkndUUvapSTaFWcW1e1J10a9UUMqTaaDitqrYyKmldJp9KYH1WALHW8tEM44bZgEaDlv2o47B7ToL6pPJ61h6rZgTbEo6f5M9Pwl-LVaxZ0imFLO6PybDw8KKf6eiudq67OBvtcB4pQVlbQMSfJ2hr7_B7qJUwrFqxklcMOlbP6iVmVKygcXS2Ezi6pr0WApKScz6uo_qHLKnL2JAZwv-TMCPRFMijkncI9NEqzm3VOn3VPFYXXcPYUL6d1Tex4pf5aN3QMDrNab</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827054885</pqid></control><display><type>article</type><title>Robust estimation of dementia prevalence from two-phase surveys with non-responders via propensity score stratification</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Shen, Chong ; Pei, Minyue ; Wang, Xiaoxiao ; Zhao, Yiming ; Wang, Luning ; Tan, Jiping ; Deng, Ke ; Li, Nan</creator><creatorcontrib>Shen, Chong ; Pei, Minyue ; Wang, Xiaoxiao ; Zhao, Yiming ; Wang, Luning ; Tan, Jiping ; Deng, Ke ; Li, Nan</creatorcontrib><description>Missing diagnoses are common in cross-sectional studies of dementia, and this missingness is usually related to whether the respondent has dementia or not. Failure to properly address this issue can lead to underestimation of prevalence. To obtain accurate prevalence estimates, we propose different estimation methods within the framework of propensity score stratification (PSS), which can significantly reduce the negative impact of non-response on prevalence estimates.
To obtain accurate estimates of dementia prevalence, we calculated the propensity score (PS) of each participant to be a non-responder using logistic regression with demographic information, cognitive tests and physical function variables as covariates. We then divided all participants into five equal-sized strata based on their PS. The stratum-specific prevalence of dementia was estimated using simple estimation (SE), regression estimation (RE), and regression estimation with multiple imputation (REMI). These stratum-specific estimates were integrated to obtain an overall estimate of dementia prevalence.
The estimated prevalence of dementia using SE, RE, and REMI with PSS was 12.24%, 12.28%, and 12.20%, respectively. These estimates showed higher consistency than the estimates obtained without PSS, which were 11.64%, 12.33%, and 11.98%, respectively. Furthermore, considering only the observed diagnoses, the prevalence in the same group was found to be 9.95%, which is significantly lower than the prevalence estimated by our proposed method. This suggested that prevalence estimates obtained without properly accounting for missing data might underestimate the true prevalence.
Estimating the prevalence of dementia using the PSS provides a more robust and less biased estimate.</description><identifier>ISSN: 1471-2288</identifier><identifier>EISSN: 1471-2288</identifier><identifier>DOI: 10.1186/s12874-023-01954-0</identifier><identifier>PMID: 37237383</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Activities of daily living ; Alzheimer's disease ; Binomial distribution ; Confounding (Statistics) ; Cross-Sectional Studies ; Dementia ; Dementia - diagnosis ; Dementia - epidemiology ; Diagnosis ; Distribution ; Humans ; Independent variables ; Methods ; Missing data ; Neuropsychology ; Prevalence ; Prevalence estimation ; Prevalence studies (Epidemiology) ; Propensity Score ; Regression analysis ; Response rates ; Sociodemographics ; Surveys and Questionnaires ; Veterans</subject><ispartof>BMC medical research methodology, 2023-05, Vol.23 (1), p.130-130, Article 130</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023</citedby><cites>FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023</cites><orcidid>0000-0002-1080-5393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224322/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2827054885?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37237383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Chong</creatorcontrib><creatorcontrib>Pei, Minyue</creatorcontrib><creatorcontrib>Wang, Xiaoxiao</creatorcontrib><creatorcontrib>Zhao, Yiming</creatorcontrib><creatorcontrib>Wang, Luning</creatorcontrib><creatorcontrib>Tan, Jiping</creatorcontrib><creatorcontrib>Deng, Ke</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><title>Robust estimation of dementia prevalence from two-phase surveys with non-responders via propensity score stratification</title><title>BMC medical research methodology</title><addtitle>BMC Med Res Methodol</addtitle><description>Missing diagnoses are common in cross-sectional studies of dementia, and this missingness is usually related to whether the respondent has dementia or not. Failure to properly address this issue can lead to underestimation of prevalence. To obtain accurate prevalence estimates, we propose different estimation methods within the framework of propensity score stratification (PSS), which can significantly reduce the negative impact of non-response on prevalence estimates.
To obtain accurate estimates of dementia prevalence, we calculated the propensity score (PS) of each participant to be a non-responder using logistic regression with demographic information, cognitive tests and physical function variables as covariates. We then divided all participants into five equal-sized strata based on their PS. The stratum-specific prevalence of dementia was estimated using simple estimation (SE), regression estimation (RE), and regression estimation with multiple imputation (REMI). These stratum-specific estimates were integrated to obtain an overall estimate of dementia prevalence.
The estimated prevalence of dementia using SE, RE, and REMI with PSS was 12.24%, 12.28%, and 12.20%, respectively. These estimates showed higher consistency than the estimates obtained without PSS, which were 11.64%, 12.33%, and 11.98%, respectively. Furthermore, considering only the observed diagnoses, the prevalence in the same group was found to be 9.95%, which is significantly lower than the prevalence estimated by our proposed method. This suggested that prevalence estimates obtained without properly accounting for missing data might underestimate the true prevalence.
Estimating the prevalence of dementia using the PSS provides a more robust and less biased estimate.</description><subject>Activities of daily living</subject><subject>Alzheimer's disease</subject><subject>Binomial distribution</subject><subject>Confounding (Statistics)</subject><subject>Cross-Sectional Studies</subject><subject>Dementia</subject><subject>Dementia - diagnosis</subject><subject>Dementia - epidemiology</subject><subject>Diagnosis</subject><subject>Distribution</subject><subject>Humans</subject><subject>Independent variables</subject><subject>Methods</subject><subject>Missing data</subject><subject>Neuropsychology</subject><subject>Prevalence</subject><subject>Prevalence estimation</subject><subject>Prevalence studies (Epidemiology)</subject><subject>Propensity Score</subject><subject>Regression analysis</subject><subject>Response rates</subject><subject>Sociodemographics</subject><subject>Surveys and Questionnaires</subject><subject>Veterans</subject><issn>1471-2288</issn><issn>1471-2288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEQXSEQLYE_wAFZ4sJli7829p5QVfFRqRISgrPltceJo4292LuJ8u_rTUppEPLBo_F7bzxvpqreEnxFiFx-zIRKwWtMWY1J25ToWXVJuCA1pVI-fxJfVK9y3mBMhGTLl9UFE5QJJtlltf8RuymPCPLot3r0MaDokIUthNFrNCTY6R6CAeRS3KJxH-thrTOgPKUdHDLa-3GNQgx1gjzEYCFltDsy4wAh-_GAsompEMZU9J03xyqvqxdO9xnePNyL6teXzz9vvtV337_e3lzf1aZZ8rFmnIPAVGNNWtBUkKazruO20dY0lmDbUaI1c5oLy4TkjkndUUvapSTaFWcW1e1J10a9UUMqTaaDitqrYyKmldJp9KYH1WALHW8tEM44bZgEaDlv2o47B7ToL6pPJ61h6rZgTbEo6f5M9Pwl-LVaxZ0imFLO6PybDw8KKf6eiudq67OBvtcB4pQVlbQMSfJ2hr7_B7qJUwrFqxklcMOlbP6iVmVKygcXS2Ezi6pr0WApKScz6uo_qHLKnL2JAZwv-TMCPRFMijkncI9NEqzm3VOn3VPFYXXcPYUL6d1Tex4pf5aN3QMDrNab</recordid><startdate>20230527</startdate><enddate>20230527</enddate><creator>Shen, Chong</creator><creator>Pei, Minyue</creator><creator>Wang, Xiaoxiao</creator><creator>Zhao, Yiming</creator><creator>Wang, Luning</creator><creator>Tan, Jiping</creator><creator>Deng, Ke</creator><creator>Li, Nan</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1080-5393</orcidid></search><sort><creationdate>20230527</creationdate><title>Robust estimation of dementia prevalence from two-phase surveys with non-responders via propensity score stratification</title><author>Shen, Chong ; Pei, Minyue ; Wang, Xiaoxiao ; Zhao, Yiming ; Wang, Luning ; Tan, Jiping ; Deng, Ke ; Li, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activities of daily living</topic><topic>Alzheimer's disease</topic><topic>Binomial distribution</topic><topic>Confounding (Statistics)</topic><topic>Cross-Sectional Studies</topic><topic>Dementia</topic><topic>Dementia - diagnosis</topic><topic>Dementia - epidemiology</topic><topic>Diagnosis</topic><topic>Distribution</topic><topic>Humans</topic><topic>Independent variables</topic><topic>Methods</topic><topic>Missing data</topic><topic>Neuropsychology</topic><topic>Prevalence</topic><topic>Prevalence estimation</topic><topic>Prevalence studies (Epidemiology)</topic><topic>Propensity Score</topic><topic>Regression analysis</topic><topic>Response rates</topic><topic>Sociodemographics</topic><topic>Surveys and Questionnaires</topic><topic>Veterans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Chong</creatorcontrib><creatorcontrib>Pei, Minyue</creatorcontrib><creatorcontrib>Wang, Xiaoxiao</creatorcontrib><creatorcontrib>Zhao, Yiming</creatorcontrib><creatorcontrib>Wang, Luning</creatorcontrib><creatorcontrib>Tan, Jiping</creatorcontrib><creatorcontrib>Deng, Ke</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>BMC medical research methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Chong</au><au>Pei, Minyue</au><au>Wang, Xiaoxiao</au><au>Zhao, Yiming</au><au>Wang, Luning</au><au>Tan, Jiping</au><au>Deng, Ke</au><au>Li, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust estimation of dementia prevalence from two-phase surveys with non-responders via propensity score stratification</atitle><jtitle>BMC medical research methodology</jtitle><addtitle>BMC Med Res Methodol</addtitle><date>2023-05-27</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>130</spage><epage>130</epage><pages>130-130</pages><artnum>130</artnum><issn>1471-2288</issn><eissn>1471-2288</eissn><abstract>Missing diagnoses are common in cross-sectional studies of dementia, and this missingness is usually related to whether the respondent has dementia or not. Failure to properly address this issue can lead to underestimation of prevalence. To obtain accurate prevalence estimates, we propose different estimation methods within the framework of propensity score stratification (PSS), which can significantly reduce the negative impact of non-response on prevalence estimates.
To obtain accurate estimates of dementia prevalence, we calculated the propensity score (PS) of each participant to be a non-responder using logistic regression with demographic information, cognitive tests and physical function variables as covariates. We then divided all participants into five equal-sized strata based on their PS. The stratum-specific prevalence of dementia was estimated using simple estimation (SE), regression estimation (RE), and regression estimation with multiple imputation (REMI). These stratum-specific estimates were integrated to obtain an overall estimate of dementia prevalence.
The estimated prevalence of dementia using SE, RE, and REMI with PSS was 12.24%, 12.28%, and 12.20%, respectively. These estimates showed higher consistency than the estimates obtained without PSS, which were 11.64%, 12.33%, and 11.98%, respectively. Furthermore, considering only the observed diagnoses, the prevalence in the same group was found to be 9.95%, which is significantly lower than the prevalence estimated by our proposed method. This suggested that prevalence estimates obtained without properly accounting for missing data might underestimate the true prevalence.
Estimating the prevalence of dementia using the PSS provides a more robust and less biased estimate.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>37237383</pmid><doi>10.1186/s12874-023-01954-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1080-5393</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2288 |
ispartof | BMC medical research methodology, 2023-05, Vol.23 (1), p.130-130, Article 130 |
issn | 1471-2288 1471-2288 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_50deb49de14342538ee94459b4ffe27d |
source | PubMed (Medline); Publicly Available Content (ProQuest) |
subjects | Activities of daily living Alzheimer's disease Binomial distribution Confounding (Statistics) Cross-Sectional Studies Dementia Dementia - diagnosis Dementia - epidemiology Diagnosis Distribution Humans Independent variables Methods Missing data Neuropsychology Prevalence Prevalence estimation Prevalence studies (Epidemiology) Propensity Score Regression analysis Response rates Sociodemographics Surveys and Questionnaires Veterans |
title | Robust estimation of dementia prevalence from two-phase surveys with non-responders via propensity score stratification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20estimation%20of%20dementia%20prevalence%20from%20two-phase%20surveys%20with%20non-responders%20via%20propensity%20score%20stratification&rft.jtitle=BMC%20medical%20research%20methodology&rft.au=Shen,%20Chong&rft.date=2023-05-27&rft.volume=23&rft.issue=1&rft.spage=130&rft.epage=130&rft.pages=130-130&rft.artnum=130&rft.issn=1471-2288&rft.eissn=1471-2288&rft_id=info:doi/10.1186/s12874-023-01954-0&rft_dat=%3Cgale_doaj_%3EA750882415%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2827054885&rft_id=info:pmid/37237383&rft_galeid=A750882415&rfr_iscdi=true |