Loading…

Robust estimation of dementia prevalence from two-phase surveys with non-responders via propensity score stratification

Missing diagnoses are common in cross-sectional studies of dementia, and this missingness is usually related to whether the respondent has dementia or not. Failure to properly address this issue can lead to underestimation of prevalence. To obtain accurate prevalence estimates, we propose different...

Full description

Saved in:
Bibliographic Details
Published in:BMC medical research methodology 2023-05, Vol.23 (1), p.130-130, Article 130
Main Authors: Shen, Chong, Pei, Minyue, Wang, Xiaoxiao, Zhao, Yiming, Wang, Luning, Tan, Jiping, Deng, Ke, Li, Nan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023
cites cdi_FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023
container_end_page 130
container_issue 1
container_start_page 130
container_title BMC medical research methodology
container_volume 23
creator Shen, Chong
Pei, Minyue
Wang, Xiaoxiao
Zhao, Yiming
Wang, Luning
Tan, Jiping
Deng, Ke
Li, Nan
description Missing diagnoses are common in cross-sectional studies of dementia, and this missingness is usually related to whether the respondent has dementia or not. Failure to properly address this issue can lead to underestimation of prevalence. To obtain accurate prevalence estimates, we propose different estimation methods within the framework of propensity score stratification (PSS), which can significantly reduce the negative impact of non-response on prevalence estimates. To obtain accurate estimates of dementia prevalence, we calculated the propensity score (PS) of each participant to be a non-responder using logistic regression with demographic information, cognitive tests and physical function variables as covariates. We then divided all participants into five equal-sized strata based on their PS. The stratum-specific prevalence of dementia was estimated using simple estimation (SE), regression estimation (RE), and regression estimation with multiple imputation (REMI). These stratum-specific estimates were integrated to obtain an overall estimate of dementia prevalence. The estimated prevalence of dementia using SE, RE, and REMI with PSS was 12.24%, 12.28%, and 12.20%, respectively. These estimates showed higher consistency than the estimates obtained without PSS, which were 11.64%, 12.33%, and 11.98%, respectively. Furthermore, considering only the observed diagnoses, the prevalence in the same group was found to be 9.95%, which is significantly lower than the prevalence estimated by our proposed method. This suggested that prevalence estimates obtained without properly accounting for missing data might underestimate the true prevalence. Estimating the prevalence of dementia using the PSS provides a more robust and less biased estimate.
doi_str_mv 10.1186/s12874-023-01954-0
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_50deb49de14342538ee94459b4ffe27d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750882415</galeid><doaj_id>oai_doaj_org_article_50deb49de14342538ee94459b4ffe27d</doaj_id><sourcerecordid>A750882415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023</originalsourceid><addsrcrecordid>eNptUk1vEzEQXSEQLYE_wAFZ4sJli7829p5QVfFRqRISgrPltceJo4292LuJ8u_rTUppEPLBo_F7bzxvpqreEnxFiFx-zIRKwWtMWY1J25ToWXVJuCA1pVI-fxJfVK9y3mBMhGTLl9UFE5QJJtlltf8RuymPCPLot3r0MaDokIUthNFrNCTY6R6CAeRS3KJxH-thrTOgPKUdHDLa-3GNQgx1gjzEYCFltDsy4wAh-_GAsompEMZU9J03xyqvqxdO9xnePNyL6teXzz9vvtV337_e3lzf1aZZ8rFmnIPAVGNNWtBUkKazruO20dY0lmDbUaI1c5oLy4TkjkndUUvapSTaFWcW1e1J10a9UUMqTaaDitqrYyKmldJp9KYH1WALHW8tEM44bZgEaDlv2o47B7ToL6pPJ61h6rZgTbEo6f5M9Pwl-LVaxZ0imFLO6PybDw8KKf6eiudq67OBvtcB4pQVlbQMSfJ2hr7_B7qJUwrFqxklcMOlbP6iVmVKygcXS2Ezi6pr0WApKScz6uo_qHLKnL2JAZwv-TMCPRFMijkncI9NEqzm3VOn3VPFYXXcPYUL6d1Tex4pf5aN3QMDrNab</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827054885</pqid></control><display><type>article</type><title>Robust estimation of dementia prevalence from two-phase surveys with non-responders via propensity score stratification</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Shen, Chong ; Pei, Minyue ; Wang, Xiaoxiao ; Zhao, Yiming ; Wang, Luning ; Tan, Jiping ; Deng, Ke ; Li, Nan</creator><creatorcontrib>Shen, Chong ; Pei, Minyue ; Wang, Xiaoxiao ; Zhao, Yiming ; Wang, Luning ; Tan, Jiping ; Deng, Ke ; Li, Nan</creatorcontrib><description>Missing diagnoses are common in cross-sectional studies of dementia, and this missingness is usually related to whether the respondent has dementia or not. Failure to properly address this issue can lead to underestimation of prevalence. To obtain accurate prevalence estimates, we propose different estimation methods within the framework of propensity score stratification (PSS), which can significantly reduce the negative impact of non-response on prevalence estimates. To obtain accurate estimates of dementia prevalence, we calculated the propensity score (PS) of each participant to be a non-responder using logistic regression with demographic information, cognitive tests and physical function variables as covariates. We then divided all participants into five equal-sized strata based on their PS. The stratum-specific prevalence of dementia was estimated using simple estimation (SE), regression estimation (RE), and regression estimation with multiple imputation (REMI). These stratum-specific estimates were integrated to obtain an overall estimate of dementia prevalence. The estimated prevalence of dementia using SE, RE, and REMI with PSS was 12.24%, 12.28%, and 12.20%, respectively. These estimates showed higher consistency than the estimates obtained without PSS, which were 11.64%, 12.33%, and 11.98%, respectively. Furthermore, considering only the observed diagnoses, the prevalence in the same group was found to be 9.95%, which is significantly lower than the prevalence estimated by our proposed method. This suggested that prevalence estimates obtained without properly accounting for missing data might underestimate the true prevalence. Estimating the prevalence of dementia using the PSS provides a more robust and less biased estimate.</description><identifier>ISSN: 1471-2288</identifier><identifier>EISSN: 1471-2288</identifier><identifier>DOI: 10.1186/s12874-023-01954-0</identifier><identifier>PMID: 37237383</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Activities of daily living ; Alzheimer's disease ; Binomial distribution ; Confounding (Statistics) ; Cross-Sectional Studies ; Dementia ; Dementia - diagnosis ; Dementia - epidemiology ; Diagnosis ; Distribution ; Humans ; Independent variables ; Methods ; Missing data ; Neuropsychology ; Prevalence ; Prevalence estimation ; Prevalence studies (Epidemiology) ; Propensity Score ; Regression analysis ; Response rates ; Sociodemographics ; Surveys and Questionnaires ; Veterans</subject><ispartof>BMC medical research methodology, 2023-05, Vol.23 (1), p.130-130, Article 130</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023</citedby><cites>FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023</cites><orcidid>0000-0002-1080-5393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224322/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2827054885?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37237383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Chong</creatorcontrib><creatorcontrib>Pei, Minyue</creatorcontrib><creatorcontrib>Wang, Xiaoxiao</creatorcontrib><creatorcontrib>Zhao, Yiming</creatorcontrib><creatorcontrib>Wang, Luning</creatorcontrib><creatorcontrib>Tan, Jiping</creatorcontrib><creatorcontrib>Deng, Ke</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><title>Robust estimation of dementia prevalence from two-phase surveys with non-responders via propensity score stratification</title><title>BMC medical research methodology</title><addtitle>BMC Med Res Methodol</addtitle><description>Missing diagnoses are common in cross-sectional studies of dementia, and this missingness is usually related to whether the respondent has dementia or not. Failure to properly address this issue can lead to underestimation of prevalence. To obtain accurate prevalence estimates, we propose different estimation methods within the framework of propensity score stratification (PSS), which can significantly reduce the negative impact of non-response on prevalence estimates. To obtain accurate estimates of dementia prevalence, we calculated the propensity score (PS) of each participant to be a non-responder using logistic regression with demographic information, cognitive tests and physical function variables as covariates. We then divided all participants into five equal-sized strata based on their PS. The stratum-specific prevalence of dementia was estimated using simple estimation (SE), regression estimation (RE), and regression estimation with multiple imputation (REMI). These stratum-specific estimates were integrated to obtain an overall estimate of dementia prevalence. The estimated prevalence of dementia using SE, RE, and REMI with PSS was 12.24%, 12.28%, and 12.20%, respectively. These estimates showed higher consistency than the estimates obtained without PSS, which were 11.64%, 12.33%, and 11.98%, respectively. Furthermore, considering only the observed diagnoses, the prevalence in the same group was found to be 9.95%, which is significantly lower than the prevalence estimated by our proposed method. This suggested that prevalence estimates obtained without properly accounting for missing data might underestimate the true prevalence. Estimating the prevalence of dementia using the PSS provides a more robust and less biased estimate.</description><subject>Activities of daily living</subject><subject>Alzheimer's disease</subject><subject>Binomial distribution</subject><subject>Confounding (Statistics)</subject><subject>Cross-Sectional Studies</subject><subject>Dementia</subject><subject>Dementia - diagnosis</subject><subject>Dementia - epidemiology</subject><subject>Diagnosis</subject><subject>Distribution</subject><subject>Humans</subject><subject>Independent variables</subject><subject>Methods</subject><subject>Missing data</subject><subject>Neuropsychology</subject><subject>Prevalence</subject><subject>Prevalence estimation</subject><subject>Prevalence studies (Epidemiology)</subject><subject>Propensity Score</subject><subject>Regression analysis</subject><subject>Response rates</subject><subject>Sociodemographics</subject><subject>Surveys and Questionnaires</subject><subject>Veterans</subject><issn>1471-2288</issn><issn>1471-2288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEQXSEQLYE_wAFZ4sJli7829p5QVfFRqRISgrPltceJo4292LuJ8u_rTUppEPLBo_F7bzxvpqreEnxFiFx-zIRKwWtMWY1J25ToWXVJuCA1pVI-fxJfVK9y3mBMhGTLl9UFE5QJJtlltf8RuymPCPLot3r0MaDokIUthNFrNCTY6R6CAeRS3KJxH-thrTOgPKUdHDLa-3GNQgx1gjzEYCFltDsy4wAh-_GAsompEMZU9J03xyqvqxdO9xnePNyL6teXzz9vvtV337_e3lzf1aZZ8rFmnIPAVGNNWtBUkKazruO20dY0lmDbUaI1c5oLy4TkjkndUUvapSTaFWcW1e1J10a9UUMqTaaDitqrYyKmldJp9KYH1WALHW8tEM44bZgEaDlv2o47B7ToL6pPJ61h6rZgTbEo6f5M9Pwl-LVaxZ0imFLO6PybDw8KKf6eiudq67OBvtcB4pQVlbQMSfJ2hr7_B7qJUwrFqxklcMOlbP6iVmVKygcXS2Ezi6pr0WApKScz6uo_qHLKnL2JAZwv-TMCPRFMijkncI9NEqzm3VOn3VPFYXXcPYUL6d1Tex4pf5aN3QMDrNab</recordid><startdate>20230527</startdate><enddate>20230527</enddate><creator>Shen, Chong</creator><creator>Pei, Minyue</creator><creator>Wang, Xiaoxiao</creator><creator>Zhao, Yiming</creator><creator>Wang, Luning</creator><creator>Tan, Jiping</creator><creator>Deng, Ke</creator><creator>Li, Nan</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1080-5393</orcidid></search><sort><creationdate>20230527</creationdate><title>Robust estimation of dementia prevalence from two-phase surveys with non-responders via propensity score stratification</title><author>Shen, Chong ; Pei, Minyue ; Wang, Xiaoxiao ; Zhao, Yiming ; Wang, Luning ; Tan, Jiping ; Deng, Ke ; Li, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activities of daily living</topic><topic>Alzheimer's disease</topic><topic>Binomial distribution</topic><topic>Confounding (Statistics)</topic><topic>Cross-Sectional Studies</topic><topic>Dementia</topic><topic>Dementia - diagnosis</topic><topic>Dementia - epidemiology</topic><topic>Diagnosis</topic><topic>Distribution</topic><topic>Humans</topic><topic>Independent variables</topic><topic>Methods</topic><topic>Missing data</topic><topic>Neuropsychology</topic><topic>Prevalence</topic><topic>Prevalence estimation</topic><topic>Prevalence studies (Epidemiology)</topic><topic>Propensity Score</topic><topic>Regression analysis</topic><topic>Response rates</topic><topic>Sociodemographics</topic><topic>Surveys and Questionnaires</topic><topic>Veterans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Chong</creatorcontrib><creatorcontrib>Pei, Minyue</creatorcontrib><creatorcontrib>Wang, Xiaoxiao</creatorcontrib><creatorcontrib>Zhao, Yiming</creatorcontrib><creatorcontrib>Wang, Luning</creatorcontrib><creatorcontrib>Tan, Jiping</creatorcontrib><creatorcontrib>Deng, Ke</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>BMC medical research methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Chong</au><au>Pei, Minyue</au><au>Wang, Xiaoxiao</au><au>Zhao, Yiming</au><au>Wang, Luning</au><au>Tan, Jiping</au><au>Deng, Ke</au><au>Li, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust estimation of dementia prevalence from two-phase surveys with non-responders via propensity score stratification</atitle><jtitle>BMC medical research methodology</jtitle><addtitle>BMC Med Res Methodol</addtitle><date>2023-05-27</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>130</spage><epage>130</epage><pages>130-130</pages><artnum>130</artnum><issn>1471-2288</issn><eissn>1471-2288</eissn><abstract>Missing diagnoses are common in cross-sectional studies of dementia, and this missingness is usually related to whether the respondent has dementia or not. Failure to properly address this issue can lead to underestimation of prevalence. To obtain accurate prevalence estimates, we propose different estimation methods within the framework of propensity score stratification (PSS), which can significantly reduce the negative impact of non-response on prevalence estimates. To obtain accurate estimates of dementia prevalence, we calculated the propensity score (PS) of each participant to be a non-responder using logistic regression with demographic information, cognitive tests and physical function variables as covariates. We then divided all participants into five equal-sized strata based on their PS. The stratum-specific prevalence of dementia was estimated using simple estimation (SE), regression estimation (RE), and regression estimation with multiple imputation (REMI). These stratum-specific estimates were integrated to obtain an overall estimate of dementia prevalence. The estimated prevalence of dementia using SE, RE, and REMI with PSS was 12.24%, 12.28%, and 12.20%, respectively. These estimates showed higher consistency than the estimates obtained without PSS, which were 11.64%, 12.33%, and 11.98%, respectively. Furthermore, considering only the observed diagnoses, the prevalence in the same group was found to be 9.95%, which is significantly lower than the prevalence estimated by our proposed method. This suggested that prevalence estimates obtained without properly accounting for missing data might underestimate the true prevalence. Estimating the prevalence of dementia using the PSS provides a more robust and less biased estimate.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>37237383</pmid><doi>10.1186/s12874-023-01954-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1080-5393</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2288
ispartof BMC medical research methodology, 2023-05, Vol.23 (1), p.130-130, Article 130
issn 1471-2288
1471-2288
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_50deb49de14342538ee94459b4ffe27d
source PubMed (Medline); Publicly Available Content (ProQuest)
subjects Activities of daily living
Alzheimer's disease
Binomial distribution
Confounding (Statistics)
Cross-Sectional Studies
Dementia
Dementia - diagnosis
Dementia - epidemiology
Diagnosis
Distribution
Humans
Independent variables
Methods
Missing data
Neuropsychology
Prevalence
Prevalence estimation
Prevalence studies (Epidemiology)
Propensity Score
Regression analysis
Response rates
Sociodemographics
Surveys and Questionnaires
Veterans
title Robust estimation of dementia prevalence from two-phase surveys with non-responders via propensity score stratification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20estimation%20of%20dementia%20prevalence%20from%20two-phase%20surveys%20with%20non-responders%20via%20propensity%20score%20stratification&rft.jtitle=BMC%20medical%20research%20methodology&rft.au=Shen,%20Chong&rft.date=2023-05-27&rft.volume=23&rft.issue=1&rft.spage=130&rft.epage=130&rft.pages=130-130&rft.artnum=130&rft.issn=1471-2288&rft.eissn=1471-2288&rft_id=info:doi/10.1186/s12874-023-01954-0&rft_dat=%3Cgale_doaj_%3EA750882415%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c564t-344e702a0a19ea2715bdfb4d5adc5d10db21aa3fa47d3784f38ab2d19681af023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2827054885&rft_id=info:pmid/37237383&rft_galeid=A750882415&rfr_iscdi=true