Loading…

Using geostationary satellite ocean color data and superpixel to map the diurnal dynamics of water transparency in the eastern China seas

•We retrieved the SDD products of hourly observations using the Geostationary Ocean Color Imager (GOCI) from 2011 to 2020 in the eastern China seas.•Superpixel image segmentation retrieved by a simple linear iterative clustering algorithm (SLIC) was applied to classify the transparency product.•The...

Full description

Saved in:
Bibliographic Details
Published in:Ecological indicators 2022-09, Vol.142, p.109219, Article 109219
Main Authors: Ding, Xiaosong, Gong, Fang, Zhu, Qiankun, Li, Jiajia, Wang, Xiao, Bai, Ruofeng, Xu, Yuzhuang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-9ffc544265e149268c6f7bcfc9f8f675aaa632235bb64b76487eda649da966473
cites cdi_FETCH-LOGICAL-c455t-9ffc544265e149268c6f7bcfc9f8f675aaa632235bb64b76487eda649da966473
container_end_page
container_issue
container_start_page 109219
container_title Ecological indicators
container_volume 142
creator Ding, Xiaosong
Gong, Fang
Zhu, Qiankun
Li, Jiajia
Wang, Xiao
Bai, Ruofeng
Xu, Yuzhuang
description •We retrieved the SDD products of hourly observations using the Geostationary Ocean Color Imager (GOCI) from 2011 to 2020 in the eastern China seas.•Superpixel image segmentation retrieved by a simple linear iterative clustering algorithm (SLIC) was applied to classify the transparency product.•The relationship between the diurnal variation of water transparency and environmental factors (Wind speed and SST) was been studied. Polar-orbiting ocean color satellites can monitor daily to interannual variations in water transparency (or Secchi disk depth, SDD) from regional to global oceans. However, diurnal variations in SDD of coastal oceans remain poorly understood. Based on the bio-optical SDD algorithm, we retrieved the SDD products of hourly observations using the Geostationary Ocean Color Imager (GOCI) from 2011 to 2020 in the eastern China seas. The determination coefficient (R2) between the SDD product and the in situ dataset is 0.93, with a root mean squared error (RMSE) of 0.86 m. Based on the pixel-level tempo-spatial analysis, superpixel image segmentation retrieved by a simple linear iterative clustering algorithm (SLIC) was applied to classify the SDD product. The reconstruction SDD superpixel products not only match the spatial distribution well but can also more clearly express the spatial gradient. The percentage of the diurnal change in transparency was high in the nearshore (∼10 %), medium in transitional waters (∼5%), and low in offshore waters (∼3%). Finally, we found a significant negative correlation between SDD and wind speed (R2 = 0.65) and a significantly positive correlation between diurnal change range (DCR) and wind speed (R2 = 0.62). In contrast, sea surface temperature (SST) was positively correlated with SDD (R2 = 0.72) but significantly negatively correlated with DCR (R2 = 0.80). These results provide a basis for studying diurnal SDD changes in highly dynamic waters.
doi_str_mv 10.1016/j.ecolind.2022.109219
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_50e252ff6eba4fe99783732ec0e3bdf7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1470160X22006914</els_id><doaj_id>oai_doaj_org_article_50e252ff6eba4fe99783732ec0e3bdf7</doaj_id><sourcerecordid>2718343498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-9ffc544265e149268c6f7bcfc9f8f675aaa632235bb64b76487eda649da966473</originalsourceid><addsrcrecordid>eNqFkcFu3CAQhq2okZomfYRKHHvxFmMM5hRVqzaNFKmXRuoNjWHYsPKCC2zbfYS-ddk46rUnYPjnG_j_pnnX0U1HO_Fhv0ETZx_shlHGak2xTl00V90oWStpz1_VPZe07QT9_rp5k_Oe1j6lxFXz5zH7sCM7jLlA8TFAOpEMBefZFyTRIARS6TERCwUIBEvyccG0-N84kxLJARZSnpBYf0wBZmJPAQ7eZBId-VVBiZQEIS-QMJgT8eFZjZDrVSDbJx-A5Hq8aS4dzBnfvqzXzePnT9-2X9qHr3f3248PreHDUFrlnBk4Z2LAjismRiOcnIwzyo1OyAEARM9YP0yT4JMUfJRoQXBlQQnBZX_d3K9cG2Gvl-QP9cs6gtfPhZh2GlLxZkY9UGQDc07gBNyhUnLsZc_QUOwn686s9ytrSfHHEXPRB59N9Q4CxmPWTHZjz3uuxiodVqlJMeeE7t_ojupzjHqvX2LU5xj1GmPtu137sHry02PS2fjqJFqf0JT6aP8fwl_sCKuR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718343498</pqid></control><display><type>article</type><title>Using geostationary satellite ocean color data and superpixel to map the diurnal dynamics of water transparency in the eastern China seas</title><source>ScienceDirect Freedom Collection</source><creator>Ding, Xiaosong ; Gong, Fang ; Zhu, Qiankun ; Li, Jiajia ; Wang, Xiao ; Bai, Ruofeng ; Xu, Yuzhuang</creator><creatorcontrib>Ding, Xiaosong ; Gong, Fang ; Zhu, Qiankun ; Li, Jiajia ; Wang, Xiao ; Bai, Ruofeng ; Xu, Yuzhuang</creatorcontrib><description>•We retrieved the SDD products of hourly observations using the Geostationary Ocean Color Imager (GOCI) from 2011 to 2020 in the eastern China seas.•Superpixel image segmentation retrieved by a simple linear iterative clustering algorithm (SLIC) was applied to classify the transparency product.•The relationship between the diurnal variation of water transparency and environmental factors (Wind speed and SST) was been studied. Polar-orbiting ocean color satellites can monitor daily to interannual variations in water transparency (or Secchi disk depth, SDD) from regional to global oceans. However, diurnal variations in SDD of coastal oceans remain poorly understood. Based on the bio-optical SDD algorithm, we retrieved the SDD products of hourly observations using the Geostationary Ocean Color Imager (GOCI) from 2011 to 2020 in the eastern China seas. The determination coefficient (R2) between the SDD product and the in situ dataset is 0.93, with a root mean squared error (RMSE) of 0.86 m. Based on the pixel-level tempo-spatial analysis, superpixel image segmentation retrieved by a simple linear iterative clustering algorithm (SLIC) was applied to classify the SDD product. The reconstruction SDD superpixel products not only match the spatial distribution well but can also more clearly express the spatial gradient. The percentage of the diurnal change in transparency was high in the nearshore (∼10 %), medium in transitional waters (∼5%), and low in offshore waters (∼3%). Finally, we found a significant negative correlation between SDD and wind speed (R2 = 0.65) and a significantly positive correlation between diurnal change range (DCR) and wind speed (R2 = 0.62). In contrast, sea surface temperature (SST) was positively correlated with SDD (R2 = 0.72) but significantly negatively correlated with DCR (R2 = 0.80). These results provide a basis for studying diurnal SDD changes in highly dynamic waters.</description><identifier>ISSN: 1470-160X</identifier><identifier>EISSN: 1872-7034</identifier><identifier>DOI: 10.1016/j.ecolind.2022.109219</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>algorithms ; China ; color ; data collection ; diurnal variation ; Diurnal variations ; Geostationary satellite ; Highly hydrodynamic waters ; image analysis ; satellites ; Secchi disk depth ; Spatial gradient ; Superpixel segmentation ; surface water temperature ; turbidity ; wind speed</subject><ispartof>Ecological indicators, 2022-09, Vol.142, p.109219, Article 109219</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-9ffc544265e149268c6f7bcfc9f8f675aaa632235bb64b76487eda649da966473</citedby><cites>FETCH-LOGICAL-c455t-9ffc544265e149268c6f7bcfc9f8f675aaa632235bb64b76487eda649da966473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Ding, Xiaosong</creatorcontrib><creatorcontrib>Gong, Fang</creatorcontrib><creatorcontrib>Zhu, Qiankun</creatorcontrib><creatorcontrib>Li, Jiajia</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Bai, Ruofeng</creatorcontrib><creatorcontrib>Xu, Yuzhuang</creatorcontrib><title>Using geostationary satellite ocean color data and superpixel to map the diurnal dynamics of water transparency in the eastern China seas</title><title>Ecological indicators</title><description>•We retrieved the SDD products of hourly observations using the Geostationary Ocean Color Imager (GOCI) from 2011 to 2020 in the eastern China seas.•Superpixel image segmentation retrieved by a simple linear iterative clustering algorithm (SLIC) was applied to classify the transparency product.•The relationship between the diurnal variation of water transparency and environmental factors (Wind speed and SST) was been studied. Polar-orbiting ocean color satellites can monitor daily to interannual variations in water transparency (or Secchi disk depth, SDD) from regional to global oceans. However, diurnal variations in SDD of coastal oceans remain poorly understood. Based on the bio-optical SDD algorithm, we retrieved the SDD products of hourly observations using the Geostationary Ocean Color Imager (GOCI) from 2011 to 2020 in the eastern China seas. The determination coefficient (R2) between the SDD product and the in situ dataset is 0.93, with a root mean squared error (RMSE) of 0.86 m. Based on the pixel-level tempo-spatial analysis, superpixel image segmentation retrieved by a simple linear iterative clustering algorithm (SLIC) was applied to classify the SDD product. The reconstruction SDD superpixel products not only match the spatial distribution well but can also more clearly express the spatial gradient. The percentage of the diurnal change in transparency was high in the nearshore (∼10 %), medium in transitional waters (∼5%), and low in offshore waters (∼3%). Finally, we found a significant negative correlation between SDD and wind speed (R2 = 0.65) and a significantly positive correlation between diurnal change range (DCR) and wind speed (R2 = 0.62). In contrast, sea surface temperature (SST) was positively correlated with SDD (R2 = 0.72) but significantly negatively correlated with DCR (R2 = 0.80). These results provide a basis for studying diurnal SDD changes in highly dynamic waters.</description><subject>algorithms</subject><subject>China</subject><subject>color</subject><subject>data collection</subject><subject>diurnal variation</subject><subject>Diurnal variations</subject><subject>Geostationary satellite</subject><subject>Highly hydrodynamic waters</subject><subject>image analysis</subject><subject>satellites</subject><subject>Secchi disk depth</subject><subject>Spatial gradient</subject><subject>Superpixel segmentation</subject><subject>surface water temperature</subject><subject>turbidity</subject><subject>wind speed</subject><issn>1470-160X</issn><issn>1872-7034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkcFu3CAQhq2okZomfYRKHHvxFmMM5hRVqzaNFKmXRuoNjWHYsPKCC2zbfYS-ddk46rUnYPjnG_j_pnnX0U1HO_Fhv0ETZx_shlHGak2xTl00V90oWStpz1_VPZe07QT9_rp5k_Oe1j6lxFXz5zH7sCM7jLlA8TFAOpEMBefZFyTRIARS6TERCwUIBEvyccG0-N84kxLJARZSnpBYf0wBZmJPAQ7eZBId-VVBiZQEIS-QMJgT8eFZjZDrVSDbJx-A5Hq8aS4dzBnfvqzXzePnT9-2X9qHr3f3248PreHDUFrlnBk4Z2LAjismRiOcnIwzyo1OyAEARM9YP0yT4JMUfJRoQXBlQQnBZX_d3K9cG2Gvl-QP9cs6gtfPhZh2GlLxZkY9UGQDc07gBNyhUnLsZc_QUOwn686s9ytrSfHHEXPRB59N9Q4CxmPWTHZjz3uuxiodVqlJMeeE7t_ojupzjHqvX2LU5xj1GmPtu137sHry02PS2fjqJFqf0JT6aP8fwl_sCKuR</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Ding, Xiaosong</creator><creator>Gong, Fang</creator><creator>Zhu, Qiankun</creator><creator>Li, Jiajia</creator><creator>Wang, Xiao</creator><creator>Bai, Ruofeng</creator><creator>Xu, Yuzhuang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>DOA</scope></search><sort><creationdate>202209</creationdate><title>Using geostationary satellite ocean color data and superpixel to map the diurnal dynamics of water transparency in the eastern China seas</title><author>Ding, Xiaosong ; Gong, Fang ; Zhu, Qiankun ; Li, Jiajia ; Wang, Xiao ; Bai, Ruofeng ; Xu, Yuzhuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-9ffc544265e149268c6f7bcfc9f8f675aaa632235bb64b76487eda649da966473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>algorithms</topic><topic>China</topic><topic>color</topic><topic>data collection</topic><topic>diurnal variation</topic><topic>Diurnal variations</topic><topic>Geostationary satellite</topic><topic>Highly hydrodynamic waters</topic><topic>image analysis</topic><topic>satellites</topic><topic>Secchi disk depth</topic><topic>Spatial gradient</topic><topic>Superpixel segmentation</topic><topic>surface water temperature</topic><topic>turbidity</topic><topic>wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Xiaosong</creatorcontrib><creatorcontrib>Gong, Fang</creatorcontrib><creatorcontrib>Zhu, Qiankun</creatorcontrib><creatorcontrib>Li, Jiajia</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Bai, Ruofeng</creatorcontrib><creatorcontrib>Xu, Yuzhuang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Ecological indicators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Xiaosong</au><au>Gong, Fang</au><au>Zhu, Qiankun</au><au>Li, Jiajia</au><au>Wang, Xiao</au><au>Bai, Ruofeng</au><au>Xu, Yuzhuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using geostationary satellite ocean color data and superpixel to map the diurnal dynamics of water transparency in the eastern China seas</atitle><jtitle>Ecological indicators</jtitle><date>2022-09</date><risdate>2022</risdate><volume>142</volume><spage>109219</spage><pages>109219-</pages><artnum>109219</artnum><issn>1470-160X</issn><eissn>1872-7034</eissn><abstract>•We retrieved the SDD products of hourly observations using the Geostationary Ocean Color Imager (GOCI) from 2011 to 2020 in the eastern China seas.•Superpixel image segmentation retrieved by a simple linear iterative clustering algorithm (SLIC) was applied to classify the transparency product.•The relationship between the diurnal variation of water transparency and environmental factors (Wind speed and SST) was been studied. Polar-orbiting ocean color satellites can monitor daily to interannual variations in water transparency (or Secchi disk depth, SDD) from regional to global oceans. However, diurnal variations in SDD of coastal oceans remain poorly understood. Based on the bio-optical SDD algorithm, we retrieved the SDD products of hourly observations using the Geostationary Ocean Color Imager (GOCI) from 2011 to 2020 in the eastern China seas. The determination coefficient (R2) between the SDD product and the in situ dataset is 0.93, with a root mean squared error (RMSE) of 0.86 m. Based on the pixel-level tempo-spatial analysis, superpixel image segmentation retrieved by a simple linear iterative clustering algorithm (SLIC) was applied to classify the SDD product. The reconstruction SDD superpixel products not only match the spatial distribution well but can also more clearly express the spatial gradient. The percentage of the diurnal change in transparency was high in the nearshore (∼10 %), medium in transitional waters (∼5%), and low in offshore waters (∼3%). Finally, we found a significant negative correlation between SDD and wind speed (R2 = 0.65) and a significantly positive correlation between diurnal change range (DCR) and wind speed (R2 = 0.62). In contrast, sea surface temperature (SST) was positively correlated with SDD (R2 = 0.72) but significantly negatively correlated with DCR (R2 = 0.80). These results provide a basis for studying diurnal SDD changes in highly dynamic waters.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ecolind.2022.109219</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1470-160X
ispartof Ecological indicators, 2022-09, Vol.142, p.109219, Article 109219
issn 1470-160X
1872-7034
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_50e252ff6eba4fe99783732ec0e3bdf7
source ScienceDirect Freedom Collection
subjects algorithms
China
color
data collection
diurnal variation
Diurnal variations
Geostationary satellite
Highly hydrodynamic waters
image analysis
satellites
Secchi disk depth
Spatial gradient
Superpixel segmentation
surface water temperature
turbidity
wind speed
title Using geostationary satellite ocean color data and superpixel to map the diurnal dynamics of water transparency in the eastern China seas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20geostationary%20satellite%20ocean%20color%20data%20and%20superpixel%20to%20map%20the%20diurnal%20dynamics%20of%20water%20transparency%20in%20the%20eastern%20China%20seas&rft.jtitle=Ecological%20indicators&rft.au=Ding,%20Xiaosong&rft.date=2022-09&rft.volume=142&rft.spage=109219&rft.pages=109219-&rft.artnum=109219&rft.issn=1470-160X&rft.eissn=1872-7034&rft_id=info:doi/10.1016/j.ecolind.2022.109219&rft_dat=%3Cproquest_doaj_%3E2718343498%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-9ffc544265e149268c6f7bcfc9f8f675aaa632235bb64b76487eda649da966473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718343498&rft_id=info:pmid/&rfr_iscdi=true