Loading…
Research on Low-Voltage AC Series Arc-Fault Detection Method Based on Electromagnetic Radiation Characteristics
Arc fault is an important cause of electrical fire. At present, the arc-fault detection method based on current and voltage is vulnerable to the influence of a nonlinear load and switching operation in the line, resulting in misjudgment and omission. Therefore, an arc-fault detection method based on...
Saved in:
Published in: | Energies (Basel) 2022-03, Vol.15 (5), p.1829 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Arc fault is an important cause of electrical fire. At present, the arc-fault detection method based on current and voltage is vulnerable to the influence of a nonlinear load and switching operation in the line, resulting in misjudgment and omission. Therefore, an arc-fault detection method based on the characteristics of electromagnetic radiation is proposed. A low-voltage AC series arc-fault simulation platform is built, and a simple annular antenna is designed to receive an electromagnetic radiation signal. It is proved by experiments that electromagnetic radiation signals have similar characteristic frequencies (13.6–14.2 MHz) under different currents, loads, arc positions and arc occurrence times. At the same time, the electromagnetic radiation signal of a low-voltage AC series arc and normal switching operations are compared. The pulse oscillation time of the radiation signals of the operating arc (2 μs) is far shorter than that of the faulty arc (4 μs), and the characteristic frequency of the radiation signal generated by the switching operation (9.35 MHz) is significantly lower than that of the series arc radiation signal (14 MHz). Compared with the existing methods, this method does not need to consider the influence of current, nonlinear load and other factors in the line, and can accurately distinguish the operating arc and faulty arc. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15051829 |