Loading…

Advances in SAW gas sensors based on the condensate-adsorption effect

A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2011-12, Vol.11 (12), p.11871-11884
Main Authors: Liu, Jiuling, Wang, Wen, Li, Shunzhou, Liu, Minghua, He, Shitang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83
cites cdi_FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83
container_end_page 11884
container_issue 12
container_start_page 11871
container_title Sensors (Basel, Switzerland)
container_volume 11
creator Liu, Jiuling
Wang, Wen
Li, Shunzhou
Liu, Minghua
He, Shitang
description A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.
doi_str_mv 10.3390/s111211871
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_50fe5ca0c9a240029f524579a0003da9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_50fe5ca0c9a240029f524579a0003da9</doaj_id><sourcerecordid>1019621983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83</originalsourceid><addsrcrecordid>eNp9kkFrFTEQxxdRbK1e_ACy4EERVieTZJNchEepWih4UPEYZpPs6z72Jc9kX8Fvb-qrtfXgKWH-P36ZCdM0zxm85dzAu8IYQ8a0Yg-aYyZQdBoRHt65HzVPStkAIOdcP26OEFGo3qjj5mzlryi6UNoptl9W39s1lbaEWFIu7UAl-DbFdrkMrUvR1zotoSNf490y1SSMY3DL0-bRSHMJz27Ok-bbh7Ovp5-6i88fz09XF52TIJaOaTYINIIGLzlXGokr77gg7Qxqpz2nXgfGwAy9weCHwSg1SOkYapBe85Pm_OD1iTZ2l6ct5Z820WR_F1JeW8rL5OZgJYxBOgJnCEWd3IwShVSGAIB7MtX1_uDa7Ydt8C7EJdN8T3o_idOlXacry1EiMFEFr24EOf3Yh7LY7VRcmGeKIe2LNQhcAajrp17_l2TATI_MaF7Rl_-gm7TPsX6qZZIrqTWHvlJvDpTLqZQcxtu2GdjrnbB_d6LCL-4Oeov-WQL-Cz42roE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537588306</pqid></control><display><type>article</type><title>Advances in SAW gas sensors based on the condensate-adsorption effect</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Liu, Jiuling ; Wang, Wen ; Li, Shunzhou ; Liu, Minghua ; He, Shitang</creator><creatorcontrib>Liu, Jiuling ; Wang, Wen ; Li, Shunzhou ; Liu, Minghua ; He, Shitang</creatorcontrib><description>A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s111211871</identifier><identifier>PMID: 22247697</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adsorption ; Chromatography ; Chromatography, Gas ; Condensates ; Control theory ; Feedback ; Frequency stability ; gas chromatography (GC) ; gas sensor ; Gas sensors ; Gases ; Models, Theoretical ; Oscillators ; Resonators ; Sensors ; surface acoustic wave (SAW) ; Surface acoustic waves ; threshold detection limit ; Velocity ; VOCs ; Volatile organic compounds ; Volatile Organic Compounds - analysis</subject><ispartof>Sensors (Basel, Switzerland), 2011-12, Vol.11 (12), p.11871-11884</ispartof><rights>Copyright MDPI AG 2011</rights><rights>2011 by the authors; licensee MDPI, Basel, Switzerland. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83</citedby><cites>FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1537588306/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1537588306?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22247697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jiuling</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Li, Shunzhou</creatorcontrib><creatorcontrib>Liu, Minghua</creatorcontrib><creatorcontrib>He, Shitang</creatorcontrib><title>Advances in SAW gas sensors based on the condensate-adsorption effect</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.</description><subject>Adsorption</subject><subject>Chromatography</subject><subject>Chromatography, Gas</subject><subject>Condensates</subject><subject>Control theory</subject><subject>Feedback</subject><subject>Frequency stability</subject><subject>gas chromatography (GC)</subject><subject>gas sensor</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Models, Theoretical</subject><subject>Oscillators</subject><subject>Resonators</subject><subject>Sensors</subject><subject>surface acoustic wave (SAW)</subject><subject>Surface acoustic waves</subject><subject>threshold detection limit</subject><subject>Velocity</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Volatile Organic Compounds - analysis</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kkFrFTEQxxdRbK1e_ACy4EERVieTZJNchEepWih4UPEYZpPs6z72Jc9kX8Fvb-qrtfXgKWH-P36ZCdM0zxm85dzAu8IYQ8a0Yg-aYyZQdBoRHt65HzVPStkAIOdcP26OEFGo3qjj5mzlryi6UNoptl9W39s1lbaEWFIu7UAl-DbFdrkMrUvR1zotoSNf490y1SSMY3DL0-bRSHMJz27Ok-bbh7Ovp5-6i88fz09XF52TIJaOaTYINIIGLzlXGokr77gg7Qxqpz2nXgfGwAy9weCHwSg1SOkYapBe85Pm_OD1iTZ2l6ct5Z820WR_F1JeW8rL5OZgJYxBOgJnCEWd3IwShVSGAIB7MtX1_uDa7Ydt8C7EJdN8T3o_idOlXacry1EiMFEFr24EOf3Yh7LY7VRcmGeKIe2LNQhcAajrp17_l2TATI_MaF7Rl_-gm7TPsX6qZZIrqTWHvlJvDpTLqZQcxtu2GdjrnbB_d6LCL-4Oeov-WQL-Cz42roE</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Liu, Jiuling</creator><creator>Wang, Wen</creator><creator>Li, Shunzhou</creator><creator>Liu, Minghua</creator><creator>He, Shitang</creator><general>MDPI AG</general><general>Molecular Diversity Preservation International (MDPI)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111201</creationdate><title>Advances in SAW gas sensors based on the condensate-adsorption effect</title><author>Liu, Jiuling ; Wang, Wen ; Li, Shunzhou ; Liu, Minghua ; He, Shitang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>Chromatography</topic><topic>Chromatography, Gas</topic><topic>Condensates</topic><topic>Control theory</topic><topic>Feedback</topic><topic>Frequency stability</topic><topic>gas chromatography (GC)</topic><topic>gas sensor</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Models, Theoretical</topic><topic>Oscillators</topic><topic>Resonators</topic><topic>Sensors</topic><topic>surface acoustic wave (SAW)</topic><topic>Surface acoustic waves</topic><topic>threshold detection limit</topic><topic>Velocity</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Volatile Organic Compounds - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiuling</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Li, Shunzhou</creatorcontrib><creatorcontrib>Liu, Minghua</creatorcontrib><creatorcontrib>He, Shitang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ (Directory of Open Access Journals)</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiuling</au><au>Wang, Wen</au><au>Li, Shunzhou</au><au>Liu, Minghua</au><au>He, Shitang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in SAW gas sensors based on the condensate-adsorption effect</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>11</volume><issue>12</issue><spage>11871</spage><epage>11884</epage><pages>11871-11884</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>22247697</pmid><doi>10.3390/s111211871</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2011-12, Vol.11 (12), p.11871-11884
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_50fe5ca0c9a240029f524579a0003da9
source PubMed (Medline); Publicly Available Content Database
subjects Adsorption
Chromatography
Chromatography, Gas
Condensates
Control theory
Feedback
Frequency stability
gas chromatography (GC)
gas sensor
Gas sensors
Gases
Models, Theoretical
Oscillators
Resonators
Sensors
surface acoustic wave (SAW)
Surface acoustic waves
threshold detection limit
Velocity
VOCs
Volatile organic compounds
Volatile Organic Compounds - analysis
title Advances in SAW gas sensors based on the condensate-adsorption effect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20SAW%20gas%20sensors%20based%20on%20the%20condensate-adsorption%20effect&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Liu,%20Jiuling&rft.date=2011-12-01&rft.volume=11&rft.issue=12&rft.spage=11871&rft.epage=11884&rft.pages=11871-11884&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s111211871&rft_dat=%3Cproquest_doaj_%3E1019621983%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1537588306&rft_id=info:pmid/22247697&rfr_iscdi=true