Loading…
Advances in SAW gas sensors based on the condensate-adsorption effect
A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2011-12, Vol.11 (12), p.11871-11884 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83 |
container_end_page | 11884 |
container_issue | 12 |
container_start_page | 11871 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 11 |
creator | Liu, Jiuling Wang, Wen Li, Shunzhou Liu, Minghua He, Shitang |
description | A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg. |
doi_str_mv | 10.3390/s111211871 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_50fe5ca0c9a240029f524579a0003da9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_50fe5ca0c9a240029f524579a0003da9</doaj_id><sourcerecordid>1019621983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83</originalsourceid><addsrcrecordid>eNp9kkFrFTEQxxdRbK1e_ACy4EERVieTZJNchEepWih4UPEYZpPs6z72Jc9kX8Fvb-qrtfXgKWH-P36ZCdM0zxm85dzAu8IYQ8a0Yg-aYyZQdBoRHt65HzVPStkAIOdcP26OEFGo3qjj5mzlryi6UNoptl9W39s1lbaEWFIu7UAl-DbFdrkMrUvR1zotoSNf490y1SSMY3DL0-bRSHMJz27Ok-bbh7Ovp5-6i88fz09XF52TIJaOaTYINIIGLzlXGokr77gg7Qxqpz2nXgfGwAy9weCHwSg1SOkYapBe85Pm_OD1iTZ2l6ct5Z820WR_F1JeW8rL5OZgJYxBOgJnCEWd3IwShVSGAIB7MtX1_uDa7Ydt8C7EJdN8T3o_idOlXacry1EiMFEFr24EOf3Yh7LY7VRcmGeKIe2LNQhcAajrp17_l2TATI_MaF7Rl_-gm7TPsX6qZZIrqTWHvlJvDpTLqZQcxtu2GdjrnbB_d6LCL-4Oeov-WQL-Cz42roE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537588306</pqid></control><display><type>article</type><title>Advances in SAW gas sensors based on the condensate-adsorption effect</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Liu, Jiuling ; Wang, Wen ; Li, Shunzhou ; Liu, Minghua ; He, Shitang</creator><creatorcontrib>Liu, Jiuling ; Wang, Wen ; Li, Shunzhou ; Liu, Minghua ; He, Shitang</creatorcontrib><description>A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s111211871</identifier><identifier>PMID: 22247697</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adsorption ; Chromatography ; Chromatography, Gas ; Condensates ; Control theory ; Feedback ; Frequency stability ; gas chromatography (GC) ; gas sensor ; Gas sensors ; Gases ; Models, Theoretical ; Oscillators ; Resonators ; Sensors ; surface acoustic wave (SAW) ; Surface acoustic waves ; threshold detection limit ; Velocity ; VOCs ; Volatile organic compounds ; Volatile Organic Compounds - analysis</subject><ispartof>Sensors (Basel, Switzerland), 2011-12, Vol.11 (12), p.11871-11884</ispartof><rights>Copyright MDPI AG 2011</rights><rights>2011 by the authors; licensee MDPI, Basel, Switzerland. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83</citedby><cites>FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1537588306/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1537588306?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22247697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jiuling</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Li, Shunzhou</creatorcontrib><creatorcontrib>Liu, Minghua</creatorcontrib><creatorcontrib>He, Shitang</creatorcontrib><title>Advances in SAW gas sensors based on the condensate-adsorption effect</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.</description><subject>Adsorption</subject><subject>Chromatography</subject><subject>Chromatography, Gas</subject><subject>Condensates</subject><subject>Control theory</subject><subject>Feedback</subject><subject>Frequency stability</subject><subject>gas chromatography (GC)</subject><subject>gas sensor</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Models, Theoretical</subject><subject>Oscillators</subject><subject>Resonators</subject><subject>Sensors</subject><subject>surface acoustic wave (SAW)</subject><subject>Surface acoustic waves</subject><subject>threshold detection limit</subject><subject>Velocity</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Volatile Organic Compounds - analysis</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kkFrFTEQxxdRbK1e_ACy4EERVieTZJNchEepWih4UPEYZpPs6z72Jc9kX8Fvb-qrtfXgKWH-P36ZCdM0zxm85dzAu8IYQ8a0Yg-aYyZQdBoRHt65HzVPStkAIOdcP26OEFGo3qjj5mzlryi6UNoptl9W39s1lbaEWFIu7UAl-DbFdrkMrUvR1zotoSNf490y1SSMY3DL0-bRSHMJz27Ok-bbh7Ovp5-6i88fz09XF52TIJaOaTYINIIGLzlXGokr77gg7Qxqpz2nXgfGwAy9weCHwSg1SOkYapBe85Pm_OD1iTZ2l6ct5Z820WR_F1JeW8rL5OZgJYxBOgJnCEWd3IwShVSGAIB7MtX1_uDa7Ydt8C7EJdN8T3o_idOlXacry1EiMFEFr24EOf3Yh7LY7VRcmGeKIe2LNQhcAajrp17_l2TATI_MaF7Rl_-gm7TPsX6qZZIrqTWHvlJvDpTLqZQcxtu2GdjrnbB_d6LCL-4Oeov-WQL-Cz42roE</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Liu, Jiuling</creator><creator>Wang, Wen</creator><creator>Li, Shunzhou</creator><creator>Liu, Minghua</creator><creator>He, Shitang</creator><general>MDPI AG</general><general>Molecular Diversity Preservation International (MDPI)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111201</creationdate><title>Advances in SAW gas sensors based on the condensate-adsorption effect</title><author>Liu, Jiuling ; Wang, Wen ; Li, Shunzhou ; Liu, Minghua ; He, Shitang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>Chromatography</topic><topic>Chromatography, Gas</topic><topic>Condensates</topic><topic>Control theory</topic><topic>Feedback</topic><topic>Frequency stability</topic><topic>gas chromatography (GC)</topic><topic>gas sensor</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Models, Theoretical</topic><topic>Oscillators</topic><topic>Resonators</topic><topic>Sensors</topic><topic>surface acoustic wave (SAW)</topic><topic>Surface acoustic waves</topic><topic>threshold detection limit</topic><topic>Velocity</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Volatile Organic Compounds - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiuling</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Li, Shunzhou</creatorcontrib><creatorcontrib>Liu, Minghua</creatorcontrib><creatorcontrib>He, Shitang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ (Directory of Open Access Journals)</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiuling</au><au>Wang, Wen</au><au>Li, Shunzhou</au><au>Liu, Minghua</au><au>He, Shitang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in SAW gas sensors based on the condensate-adsorption effect</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>11</volume><issue>12</issue><spage>11871</spage><epage>11884</epage><pages>11871-11884</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>22247697</pmid><doi>10.3390/s111211871</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2011-12, Vol.11 (12), p.11871-11884 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_50fe5ca0c9a240029f524579a0003da9 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Adsorption Chromatography Chromatography, Gas Condensates Control theory Feedback Frequency stability gas chromatography (GC) gas sensor Gas sensors Gases Models, Theoretical Oscillators Resonators Sensors surface acoustic wave (SAW) Surface acoustic waves threshold detection limit Velocity VOCs Volatile organic compounds Volatile Organic Compounds - analysis |
title | Advances in SAW gas sensors based on the condensate-adsorption effect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20SAW%20gas%20sensors%20based%20on%20the%20condensate-adsorption%20effect&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Liu,%20Jiuling&rft.date=2011-12-01&rft.volume=11&rft.issue=12&rft.spage=11871&rft.epage=11884&rft.pages=11871-11884&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s111211871&rft_dat=%3Cproquest_doaj_%3E1019621983%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-181b4294abd533782a37dc34a8c928c8d3a68e1109b692edbb977b55c12805d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1537588306&rft_id=info:pmid/22247697&rfr_iscdi=true |