Loading…

Midcircuit Qubit Measurement and Rearrangement in a ^{171}Yb Atomic Array

Measurement-based quantum error correction relies on the ability to determine the state of a subset of qubits (ancillas) within a processor without revealing or disturbing the state of the remaining qubits. Among neutral-atom-based platforms, a scalable, high-fidelity approach to midcircuit measurem...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2023-11, Vol.13 (4), p.041034
Main Authors: M. A. Norcia, W. B. Cairncross, K. Barnes, P. Battaglino, A. Brown, M. O. Brown, K. Cassella, C.-A. Chen, R. Coxe, D. Crow, J. Epstein, C. Griger, A. M. W. Jones, H. Kim, J. M. Kindem, J. King, S. S. Kondov, K. Kotru, J. Lauigan, M. Li, M. Lu, E. Megidish, J. Marjanovic, M. McDonald, T. Mittiga, J. A. Muniz, S. Narayanaswami, C. Nishiguchi, R. Notermans, T. Paule, K. A. Pawlak, L. S. Peng, A. Ryou, A. Smull, D. Stack, M. Stone, A. Sucich, M. Urbanek, R. J. M. van de Veerdonk, Z. Vendeiro, T. Wilkason, T.-Y. Wu, X. Xie, X. Zhang, B. J. Bloom
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 4
container_start_page 041034
container_title Physical review. X
container_volume 13
creator M. A. Norcia
W. B. Cairncross
K. Barnes
P. Battaglino
A. Brown
M. O. Brown
K. Cassella
C.-A. Chen
R. Coxe
D. Crow
J. Epstein
C. Griger
A. M. W. Jones
H. Kim
J. M. Kindem
J. King
S. S. Kondov
K. Kotru
J. Lauigan
M. Li
M. Lu
E. Megidish
J. Marjanovic
M. McDonald
T. Mittiga
J. A. Muniz
S. Narayanaswami
C. Nishiguchi
R. Notermans
T. Paule
K. A. Pawlak
L. S. Peng
A. Ryou
A. Smull
D. Stack
M. Stone
A. Sucich
M. Urbanek
R. J. M. van de Veerdonk
Z. Vendeiro
T. Wilkason
T.-Y. Wu
X. Xie
X. Zhang
B. J. Bloom
description Measurement-based quantum error correction relies on the ability to determine the state of a subset of qubits (ancillas) within a processor without revealing or disturbing the state of the remaining qubits. Among neutral-atom-based platforms, a scalable, high-fidelity approach to midcircuit measurement that retains the ancilla qubits in a state suitable for future operations has not yet been demonstrated. In this work, we perform maging using a narrow-linewidth transition in an array of tweezer-confined ^{171}Yb atoms to demonstrate nondestructive state-selective and site-selective detection. By applying site-specific light shifts, selected atoms within the array can be hidden from imaging light, which allows a subset of qubits to be measured while causing only percent-level errors on the remaining qubits. As a proof-of-principle demonstration of conditional operations based on the results of the midcircuit measurements, and of our ability to reuse ancilla qubits, we perform conditional refilling of ancilla sites to correct for occasional atom loss, while maintaining the coherence of data qubits. Looking toward true continuous operation, we demonstrate loading of a magneto-optical trap with a minimal degree of qubit decoherence.
doi_str_mv 10.1103/PhysRevX.13.041034
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_51205efc6653468d9d6e24b8132dce1b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_51205efc6653468d9d6e24b8132dce1b</doaj_id><sourcerecordid>oai_doaj_org_article_51205efc6653468d9d6e24b8132dce1b</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_51205efc6653468d9d6e24b8132dce1b3</originalsourceid><addsrcrecordid>eNqtjNFqwjAYhYMwUDZfwKu8gF3-Jk3rpYgyL4RNdrHdGP4mvxqxrSTtoIy9-8q2R9i5-A58HA5jMxAJgJCPz-c-7unjLQGZCDUYNWKTFLSYSymKMZvGeBFDtACV5xO23XlnfbCdb_lLVw7cEcYuUEV1y7F2fE8YAtanX-NrjvzwCTl8vZd82TaVt3w5DPoHdnfEa6TpX9-z7Wb9unqauwYv5hZ8haE3DXrzI5pwMhhab69kMkhFRkerdSaVLtzCaUpVWYBMnSUo5X9-fQPWRlv9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Midcircuit Qubit Measurement and Rearrangement in a ^{171}Yb Atomic Array</title><source>Publicly Available Content Database</source><creator>M. A. Norcia ; W. B. Cairncross ; K. Barnes ; P. Battaglino ; A. Brown ; M. O. Brown ; K. Cassella ; C.-A. Chen ; R. Coxe ; D. Crow ; J. Epstein ; C. Griger ; A. M. W. Jones ; H. Kim ; J. M. Kindem ; J. King ; S. S. Kondov ; K. Kotru ; J. Lauigan ; M. Li ; M. Lu ; E. Megidish ; J. Marjanovic ; M. McDonald ; T. Mittiga ; J. A. Muniz ; S. Narayanaswami ; C. Nishiguchi ; R. Notermans ; T. Paule ; K. A. Pawlak ; L. S. Peng ; A. Ryou ; A. Smull ; D. Stack ; M. Stone ; A. Sucich ; M. Urbanek ; R. J. M. van de Veerdonk ; Z. Vendeiro ; T. Wilkason ; T.-Y. Wu ; X. Xie ; X. Zhang ; B. J. Bloom</creator><creatorcontrib>M. A. Norcia ; W. B. Cairncross ; K. Barnes ; P. Battaglino ; A. Brown ; M. O. Brown ; K. Cassella ; C.-A. Chen ; R. Coxe ; D. Crow ; J. Epstein ; C. Griger ; A. M. W. Jones ; H. Kim ; J. M. Kindem ; J. King ; S. S. Kondov ; K. Kotru ; J. Lauigan ; M. Li ; M. Lu ; E. Megidish ; J. Marjanovic ; M. McDonald ; T. Mittiga ; J. A. Muniz ; S. Narayanaswami ; C. Nishiguchi ; R. Notermans ; T. Paule ; K. A. Pawlak ; L. S. Peng ; A. Ryou ; A. Smull ; D. Stack ; M. Stone ; A. Sucich ; M. Urbanek ; R. J. M. van de Veerdonk ; Z. Vendeiro ; T. Wilkason ; T.-Y. Wu ; X. Xie ; X. Zhang ; B. J. Bloom</creatorcontrib><description>Measurement-based quantum error correction relies on the ability to determine the state of a subset of qubits (ancillas) within a processor without revealing or disturbing the state of the remaining qubits. Among neutral-atom-based platforms, a scalable, high-fidelity approach to midcircuit measurement that retains the ancilla qubits in a state suitable for future operations has not yet been demonstrated. In this work, we perform maging using a narrow-linewidth transition in an array of tweezer-confined ^{171}Yb atoms to demonstrate nondestructive state-selective and site-selective detection. By applying site-specific light shifts, selected atoms within the array can be hidden from imaging light, which allows a subset of qubits to be measured while causing only percent-level errors on the remaining qubits. As a proof-of-principle demonstration of conditional operations based on the results of the midcircuit measurements, and of our ability to reuse ancilla qubits, we perform conditional refilling of ancilla sites to correct for occasional atom loss, while maintaining the coherence of data qubits. Looking toward true continuous operation, we demonstrate loading of a magneto-optical trap with a minimal degree of qubit decoherence.</description><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.13.041034</identifier><language>eng</language><publisher>American Physical Society</publisher><ispartof>Physical review. X, 2023-11, Vol.13 (4), p.041034</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>M. A. Norcia</creatorcontrib><creatorcontrib>W. B. Cairncross</creatorcontrib><creatorcontrib>K. Barnes</creatorcontrib><creatorcontrib>P. Battaglino</creatorcontrib><creatorcontrib>A. Brown</creatorcontrib><creatorcontrib>M. O. Brown</creatorcontrib><creatorcontrib>K. Cassella</creatorcontrib><creatorcontrib>C.-A. Chen</creatorcontrib><creatorcontrib>R. Coxe</creatorcontrib><creatorcontrib>D. Crow</creatorcontrib><creatorcontrib>J. Epstein</creatorcontrib><creatorcontrib>C. Griger</creatorcontrib><creatorcontrib>A. M. W. Jones</creatorcontrib><creatorcontrib>H. Kim</creatorcontrib><creatorcontrib>J. M. Kindem</creatorcontrib><creatorcontrib>J. King</creatorcontrib><creatorcontrib>S. S. Kondov</creatorcontrib><creatorcontrib>K. Kotru</creatorcontrib><creatorcontrib>J. Lauigan</creatorcontrib><creatorcontrib>M. Li</creatorcontrib><creatorcontrib>M. Lu</creatorcontrib><creatorcontrib>E. Megidish</creatorcontrib><creatorcontrib>J. Marjanovic</creatorcontrib><creatorcontrib>M. McDonald</creatorcontrib><creatorcontrib>T. Mittiga</creatorcontrib><creatorcontrib>J. A. Muniz</creatorcontrib><creatorcontrib>S. Narayanaswami</creatorcontrib><creatorcontrib>C. Nishiguchi</creatorcontrib><creatorcontrib>R. Notermans</creatorcontrib><creatorcontrib>T. Paule</creatorcontrib><creatorcontrib>K. A. Pawlak</creatorcontrib><creatorcontrib>L. S. Peng</creatorcontrib><creatorcontrib>A. Ryou</creatorcontrib><creatorcontrib>A. Smull</creatorcontrib><creatorcontrib>D. Stack</creatorcontrib><creatorcontrib>M. Stone</creatorcontrib><creatorcontrib>A. Sucich</creatorcontrib><creatorcontrib>M. Urbanek</creatorcontrib><creatorcontrib>R. J. M. van de Veerdonk</creatorcontrib><creatorcontrib>Z. Vendeiro</creatorcontrib><creatorcontrib>T. Wilkason</creatorcontrib><creatorcontrib>T.-Y. Wu</creatorcontrib><creatorcontrib>X. Xie</creatorcontrib><creatorcontrib>X. Zhang</creatorcontrib><creatorcontrib>B. J. Bloom</creatorcontrib><title>Midcircuit Qubit Measurement and Rearrangement in a ^{171}Yb Atomic Array</title><title>Physical review. X</title><description>Measurement-based quantum error correction relies on the ability to determine the state of a subset of qubits (ancillas) within a processor without revealing or disturbing the state of the remaining qubits. Among neutral-atom-based platforms, a scalable, high-fidelity approach to midcircuit measurement that retains the ancilla qubits in a state suitable for future operations has not yet been demonstrated. In this work, we perform maging using a narrow-linewidth transition in an array of tweezer-confined ^{171}Yb atoms to demonstrate nondestructive state-selective and site-selective detection. By applying site-specific light shifts, selected atoms within the array can be hidden from imaging light, which allows a subset of qubits to be measured while causing only percent-level errors on the remaining qubits. As a proof-of-principle demonstration of conditional operations based on the results of the midcircuit measurements, and of our ability to reuse ancilla qubits, we perform conditional refilling of ancilla sites to correct for occasional atom loss, while maintaining the coherence of data qubits. Looking toward true continuous operation, we demonstrate loading of a magneto-optical trap with a minimal degree of qubit decoherence.</description><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtjNFqwjAYhYMwUDZfwKu8gF3-Jk3rpYgyL4RNdrHdGP4mvxqxrSTtoIy9-8q2R9i5-A58HA5jMxAJgJCPz-c-7unjLQGZCDUYNWKTFLSYSymKMZvGeBFDtACV5xO23XlnfbCdb_lLVw7cEcYuUEV1y7F2fE8YAtanX-NrjvzwCTl8vZd82TaVt3w5DPoHdnfEa6TpX9-z7Wb9unqauwYv5hZ8haE3DXrzI5pwMhhab69kMkhFRkerdSaVLtzCaUpVWYBMnSUo5X9-fQPWRlv9</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>M. A. Norcia</creator><creator>W. B. Cairncross</creator><creator>K. Barnes</creator><creator>P. Battaglino</creator><creator>A. Brown</creator><creator>M. O. Brown</creator><creator>K. Cassella</creator><creator>C.-A. Chen</creator><creator>R. Coxe</creator><creator>D. Crow</creator><creator>J. Epstein</creator><creator>C. Griger</creator><creator>A. M. W. Jones</creator><creator>H. Kim</creator><creator>J. M. Kindem</creator><creator>J. King</creator><creator>S. S. Kondov</creator><creator>K. Kotru</creator><creator>J. Lauigan</creator><creator>M. Li</creator><creator>M. Lu</creator><creator>E. Megidish</creator><creator>J. Marjanovic</creator><creator>M. McDonald</creator><creator>T. Mittiga</creator><creator>J. A. Muniz</creator><creator>S. Narayanaswami</creator><creator>C. Nishiguchi</creator><creator>R. Notermans</creator><creator>T. Paule</creator><creator>K. A. Pawlak</creator><creator>L. S. Peng</creator><creator>A. Ryou</creator><creator>A. Smull</creator><creator>D. Stack</creator><creator>M. Stone</creator><creator>A. Sucich</creator><creator>M. Urbanek</creator><creator>R. J. M. van de Veerdonk</creator><creator>Z. Vendeiro</creator><creator>T. Wilkason</creator><creator>T.-Y. Wu</creator><creator>X. Xie</creator><creator>X. Zhang</creator><creator>B. J. Bloom</creator><general>American Physical Society</general><scope>DOA</scope></search><sort><creationdate>20231101</creationdate><title>Midcircuit Qubit Measurement and Rearrangement in a ^{171}Yb Atomic Array</title><author>M. A. Norcia ; W. B. Cairncross ; K. Barnes ; P. Battaglino ; A. Brown ; M. O. Brown ; K. Cassella ; C.-A. Chen ; R. Coxe ; D. Crow ; J. Epstein ; C. Griger ; A. M. W. Jones ; H. Kim ; J. M. Kindem ; J. King ; S. S. Kondov ; K. Kotru ; J. Lauigan ; M. Li ; M. Lu ; E. Megidish ; J. Marjanovic ; M. McDonald ; T. Mittiga ; J. A. Muniz ; S. Narayanaswami ; C. Nishiguchi ; R. Notermans ; T. Paule ; K. A. Pawlak ; L. S. Peng ; A. Ryou ; A. Smull ; D. Stack ; M. Stone ; A. Sucich ; M. Urbanek ; R. J. M. van de Veerdonk ; Z. Vendeiro ; T. Wilkason ; T.-Y. Wu ; X. Xie ; X. Zhang ; B. J. Bloom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_51205efc6653468d9d6e24b8132dce1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M. A. Norcia</creatorcontrib><creatorcontrib>W. B. Cairncross</creatorcontrib><creatorcontrib>K. Barnes</creatorcontrib><creatorcontrib>P. Battaglino</creatorcontrib><creatorcontrib>A. Brown</creatorcontrib><creatorcontrib>M. O. Brown</creatorcontrib><creatorcontrib>K. Cassella</creatorcontrib><creatorcontrib>C.-A. Chen</creatorcontrib><creatorcontrib>R. Coxe</creatorcontrib><creatorcontrib>D. Crow</creatorcontrib><creatorcontrib>J. Epstein</creatorcontrib><creatorcontrib>C. Griger</creatorcontrib><creatorcontrib>A. M. W. Jones</creatorcontrib><creatorcontrib>H. Kim</creatorcontrib><creatorcontrib>J. M. Kindem</creatorcontrib><creatorcontrib>J. King</creatorcontrib><creatorcontrib>S. S. Kondov</creatorcontrib><creatorcontrib>K. Kotru</creatorcontrib><creatorcontrib>J. Lauigan</creatorcontrib><creatorcontrib>M. Li</creatorcontrib><creatorcontrib>M. Lu</creatorcontrib><creatorcontrib>E. Megidish</creatorcontrib><creatorcontrib>J. Marjanovic</creatorcontrib><creatorcontrib>M. McDonald</creatorcontrib><creatorcontrib>T. Mittiga</creatorcontrib><creatorcontrib>J. A. Muniz</creatorcontrib><creatorcontrib>S. Narayanaswami</creatorcontrib><creatorcontrib>C. Nishiguchi</creatorcontrib><creatorcontrib>R. Notermans</creatorcontrib><creatorcontrib>T. Paule</creatorcontrib><creatorcontrib>K. A. Pawlak</creatorcontrib><creatorcontrib>L. S. Peng</creatorcontrib><creatorcontrib>A. Ryou</creatorcontrib><creatorcontrib>A. Smull</creatorcontrib><creatorcontrib>D. Stack</creatorcontrib><creatorcontrib>M. Stone</creatorcontrib><creatorcontrib>A. Sucich</creatorcontrib><creatorcontrib>M. Urbanek</creatorcontrib><creatorcontrib>R. J. M. van de Veerdonk</creatorcontrib><creatorcontrib>Z. Vendeiro</creatorcontrib><creatorcontrib>T. Wilkason</creatorcontrib><creatorcontrib>T.-Y. Wu</creatorcontrib><creatorcontrib>X. Xie</creatorcontrib><creatorcontrib>X. Zhang</creatorcontrib><creatorcontrib>B. J. Bloom</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M. A. Norcia</au><au>W. B. Cairncross</au><au>K. Barnes</au><au>P. Battaglino</au><au>A. Brown</au><au>M. O. Brown</au><au>K. Cassella</au><au>C.-A. Chen</au><au>R. Coxe</au><au>D. Crow</au><au>J. Epstein</au><au>C. Griger</au><au>A. M. W. Jones</au><au>H. Kim</au><au>J. M. Kindem</au><au>J. King</au><au>S. S. Kondov</au><au>K. Kotru</au><au>J. Lauigan</au><au>M. Li</au><au>M. Lu</au><au>E. Megidish</au><au>J. Marjanovic</au><au>M. McDonald</au><au>T. Mittiga</au><au>J. A. Muniz</au><au>S. Narayanaswami</au><au>C. Nishiguchi</au><au>R. Notermans</au><au>T. Paule</au><au>K. A. Pawlak</au><au>L. S. Peng</au><au>A. Ryou</au><au>A. Smull</au><au>D. Stack</au><au>M. Stone</au><au>A. Sucich</au><au>M. Urbanek</au><au>R. J. M. van de Veerdonk</au><au>Z. Vendeiro</au><au>T. Wilkason</au><au>T.-Y. Wu</au><au>X. Xie</au><au>X. Zhang</au><au>B. J. Bloom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Midcircuit Qubit Measurement and Rearrangement in a ^{171}Yb Atomic Array</atitle><jtitle>Physical review. X</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>13</volume><issue>4</issue><spage>041034</spage><pages>041034-</pages><eissn>2160-3308</eissn><abstract>Measurement-based quantum error correction relies on the ability to determine the state of a subset of qubits (ancillas) within a processor without revealing or disturbing the state of the remaining qubits. Among neutral-atom-based platforms, a scalable, high-fidelity approach to midcircuit measurement that retains the ancilla qubits in a state suitable for future operations has not yet been demonstrated. In this work, we perform maging using a narrow-linewidth transition in an array of tweezer-confined ^{171}Yb atoms to demonstrate nondestructive state-selective and site-selective detection. By applying site-specific light shifts, selected atoms within the array can be hidden from imaging light, which allows a subset of qubits to be measured while causing only percent-level errors on the remaining qubits. As a proof-of-principle demonstration of conditional operations based on the results of the midcircuit measurements, and of our ability to reuse ancilla qubits, we perform conditional refilling of ancilla sites to correct for occasional atom loss, while maintaining the coherence of data qubits. Looking toward true continuous operation, we demonstrate loading of a magneto-optical trap with a minimal degree of qubit decoherence.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevX.13.041034</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2160-3308
ispartof Physical review. X, 2023-11, Vol.13 (4), p.041034
issn 2160-3308
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_51205efc6653468d9d6e24b8132dce1b
source Publicly Available Content Database
title Midcircuit Qubit Measurement and Rearrangement in a ^{171}Yb Atomic Array
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Midcircuit%20Qubit%20Measurement%20and%20Rearrangement%20in%20a%20%5E%7B171%7DYb%20Atomic%20Array&rft.jtitle=Physical%20review.%20X&rft.au=M.%E2%80%89A.%20Norcia&rft.date=2023-11-01&rft.volume=13&rft.issue=4&rft.spage=041034&rft.pages=041034-&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.13.041034&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_51205efc6653468d9d6e24b8132dce1b%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_51205efc6653468d9d6e24b8132dce1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true