Loading…

Entire Analytic Functions of Unbounded Type on Banach Spaces and Their Lineability

In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type ca...

Full description

Saved in:
Bibliographic Details
Published in:Axioms 2021-09, Vol.10 (3), p.150
Main Authors: Zagorodnyuk, Andriy, Hihliuk, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63
cites cdi_FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63
container_end_page
container_issue 3
container_start_page 150
container_title Axioms
container_volume 10
creator Zagorodnyuk, Andriy
Hihliuk, Anna
description In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.
doi_str_mv 10.3390/axioms10030150
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5123ee654429447db55aeeffe68faace</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5123ee654429447db55aeeffe68faace</doaj_id><sourcerecordid>2576379850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63</originalsourceid><addsrcrecordid>eNpVUcFKAzEQXUTBUnv1HPDcmmw2ye6xllYLBUHbc5jNTmzKNqnJFuzfu1oRncsM8x5vePOy7JbRCecVvYcPF_aJUcopE_QiG-RUiTGTJb38M19no5R2tK-K8ZLxQfYy952LSKYe2lPnDFkcvelc8IkESza-DkffYEPWpwOS4MkDeDBb8noAg4mA75EtukhWziPUrnXd6Sa7stAmHP30YbZZzNezp_Hq-XE5m67GhivejQugVqJiSjXcsBosl8qayqrCogVJm7JCsJKjpazIqQCjgKFkORMFa3pgmC3Puk2AnT5Et4d40gGc_l6E-KYh9pZa1ILlHFGKosirolBNLQQgWouytNA76bXuzlqHGN6PmDq9C8fY_yTpXCjJVVUK2rMmZ5aJIaWI9vcqo_orBv0_Bv4JnhN7mQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576379850</pqid></control><display><type>article</type><title>Entire Analytic Functions of Unbounded Type on Banach Spaces and Their Lineability</title><source>Publicly Available Content Database</source><creator>Zagorodnyuk, Andriy ; Hihliuk, Anna</creator><creatorcontrib>Zagorodnyuk, Andriy ; Hihliuk, Anna</creatorcontrib><description>In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms10030150</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algebra ; Analytic functions ; analytic functions on Banach spaces ; Banach spaces ; Entire functions ; functions of unbounded type ; Mathematical analysis ; Polynomials ; Subspaces ; symmetric polynomials on Banach spaces</subject><ispartof>Axioms, 2021-09, Vol.10 (3), p.150</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63</citedby><cites>FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63</cites><orcidid>0000-0002-5554-4342 ; 0000-0001-9447-5645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576379850/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576379850?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Zagorodnyuk, Andriy</creatorcontrib><creatorcontrib>Hihliuk, Anna</creatorcontrib><title>Entire Analytic Functions of Unbounded Type on Banach Spaces and Their Lineability</title><title>Axioms</title><description>In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.</description><subject>Algebra</subject><subject>Analytic functions</subject><subject>analytic functions on Banach spaces</subject><subject>Banach spaces</subject><subject>Entire functions</subject><subject>functions of unbounded type</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Subspaces</subject><subject>symmetric polynomials on Banach spaces</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUcFKAzEQXUTBUnv1HPDcmmw2ye6xllYLBUHbc5jNTmzKNqnJFuzfu1oRncsM8x5vePOy7JbRCecVvYcPF_aJUcopE_QiG-RUiTGTJb38M19no5R2tK-K8ZLxQfYy952LSKYe2lPnDFkcvelc8IkESza-DkffYEPWpwOS4MkDeDBb8noAg4mA75EtukhWziPUrnXd6Sa7stAmHP30YbZZzNezp_Hq-XE5m67GhivejQugVqJiSjXcsBosl8qayqrCogVJm7JCsJKjpazIqQCjgKFkORMFa3pgmC3Puk2AnT5Et4d40gGc_l6E-KYh9pZa1ILlHFGKosirolBNLQQgWouytNA76bXuzlqHGN6PmDq9C8fY_yTpXCjJVVUK2rMmZ5aJIaWI9vcqo_orBv0_Bv4JnhN7mQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Zagorodnyuk, Andriy</creator><creator>Hihliuk, Anna</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5554-4342</orcidid><orcidid>https://orcid.org/0000-0001-9447-5645</orcidid></search><sort><creationdate>20210901</creationdate><title>Entire Analytic Functions of Unbounded Type on Banach Spaces and Their Lineability</title><author>Zagorodnyuk, Andriy ; Hihliuk, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analytic functions</topic><topic>analytic functions on Banach spaces</topic><topic>Banach spaces</topic><topic>Entire functions</topic><topic>functions of unbounded type</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Subspaces</topic><topic>symmetric polynomials on Banach spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zagorodnyuk, Andriy</creatorcontrib><creatorcontrib>Hihliuk, Anna</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zagorodnyuk, Andriy</au><au>Hihliuk, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entire Analytic Functions of Unbounded Type on Banach Spaces and Their Lineability</atitle><jtitle>Axioms</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>10</volume><issue>3</issue><spage>150</spage><pages>150-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms10030150</doi><orcidid>https://orcid.org/0000-0002-5554-4342</orcidid><orcidid>https://orcid.org/0000-0001-9447-5645</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-1680
ispartof Axioms, 2021-09, Vol.10 (3), p.150
issn 2075-1680
2075-1680
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5123ee654429447db55aeeffe68faace
source Publicly Available Content Database
subjects Algebra
Analytic functions
analytic functions on Banach spaces
Banach spaces
Entire functions
functions of unbounded type
Mathematical analysis
Polynomials
Subspaces
symmetric polynomials on Banach spaces
title Entire Analytic Functions of Unbounded Type on Banach Spaces and Their Lineability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entire%20Analytic%20Functions%20of%20Unbounded%20Type%20on%20Banach%20Spaces%20and%20Their%20Lineability&rft.jtitle=Axioms&rft.au=Zagorodnyuk,%20Andriy&rft.date=2021-09-01&rft.volume=10&rft.issue=3&rft.spage=150&rft.pages=150-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms10030150&rft_dat=%3Cproquest_doaj_%3E2576379850%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576379850&rft_id=info:pmid/&rfr_iscdi=true