Loading…
Entire Analytic Functions of Unbounded Type on Banach Spaces and Their Lineability
In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type ca...
Saved in:
Published in: | Axioms 2021-09, Vol.10 (3), p.150 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63 |
---|---|
cites | cdi_FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63 |
container_end_page | |
container_issue | 3 |
container_start_page | 150 |
container_title | Axioms |
container_volume | 10 |
creator | Zagorodnyuk, Andriy Hihliuk, Anna |
description | In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained. |
doi_str_mv | 10.3390/axioms10030150 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5123ee654429447db55aeeffe68faace</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5123ee654429447db55aeeffe68faace</doaj_id><sourcerecordid>2576379850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63</originalsourceid><addsrcrecordid>eNpVUcFKAzEQXUTBUnv1HPDcmmw2ye6xllYLBUHbc5jNTmzKNqnJFuzfu1oRncsM8x5vePOy7JbRCecVvYcPF_aJUcopE_QiG-RUiTGTJb38M19no5R2tK-K8ZLxQfYy952LSKYe2lPnDFkcvelc8IkESza-DkffYEPWpwOS4MkDeDBb8noAg4mA75EtukhWziPUrnXd6Sa7stAmHP30YbZZzNezp_Hq-XE5m67GhivejQugVqJiSjXcsBosl8qayqrCogVJm7JCsJKjpazIqQCjgKFkORMFa3pgmC3Puk2AnT5Et4d40gGc_l6E-KYh9pZa1ILlHFGKosirolBNLQQgWouytNA76bXuzlqHGN6PmDq9C8fY_yTpXCjJVVUK2rMmZ5aJIaWI9vcqo_orBv0_Bv4JnhN7mQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576379850</pqid></control><display><type>article</type><title>Entire Analytic Functions of Unbounded Type on Banach Spaces and Their Lineability</title><source>Publicly Available Content Database</source><creator>Zagorodnyuk, Andriy ; Hihliuk, Anna</creator><creatorcontrib>Zagorodnyuk, Andriy ; Hihliuk, Anna</creatorcontrib><description>In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms10030150</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algebra ; Analytic functions ; analytic functions on Banach spaces ; Banach spaces ; Entire functions ; functions of unbounded type ; Mathematical analysis ; Polynomials ; Subspaces ; symmetric polynomials on Banach spaces</subject><ispartof>Axioms, 2021-09, Vol.10 (3), p.150</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63</citedby><cites>FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63</cites><orcidid>0000-0002-5554-4342 ; 0000-0001-9447-5645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576379850/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576379850?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Zagorodnyuk, Andriy</creatorcontrib><creatorcontrib>Hihliuk, Anna</creatorcontrib><title>Entire Analytic Functions of Unbounded Type on Banach Spaces and Their Lineability</title><title>Axioms</title><description>In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.</description><subject>Algebra</subject><subject>Analytic functions</subject><subject>analytic functions on Banach spaces</subject><subject>Banach spaces</subject><subject>Entire functions</subject><subject>functions of unbounded type</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Subspaces</subject><subject>symmetric polynomials on Banach spaces</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUcFKAzEQXUTBUnv1HPDcmmw2ye6xllYLBUHbc5jNTmzKNqnJFuzfu1oRncsM8x5vePOy7JbRCecVvYcPF_aJUcopE_QiG-RUiTGTJb38M19no5R2tK-K8ZLxQfYy952LSKYe2lPnDFkcvelc8IkESza-DkffYEPWpwOS4MkDeDBb8noAg4mA75EtukhWziPUrnXd6Sa7stAmHP30YbZZzNezp_Hq-XE5m67GhivejQugVqJiSjXcsBosl8qayqrCogVJm7JCsJKjpazIqQCjgKFkORMFa3pgmC3Puk2AnT5Et4d40gGc_l6E-KYh9pZa1ILlHFGKosirolBNLQQgWouytNA76bXuzlqHGN6PmDq9C8fY_yTpXCjJVVUK2rMmZ5aJIaWI9vcqo_orBv0_Bv4JnhN7mQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Zagorodnyuk, Andriy</creator><creator>Hihliuk, Anna</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5554-4342</orcidid><orcidid>https://orcid.org/0000-0001-9447-5645</orcidid></search><sort><creationdate>20210901</creationdate><title>Entire Analytic Functions of Unbounded Type on Banach Spaces and Their Lineability</title><author>Zagorodnyuk, Andriy ; Hihliuk, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analytic functions</topic><topic>analytic functions on Banach spaces</topic><topic>Banach spaces</topic><topic>Entire functions</topic><topic>functions of unbounded type</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Subspaces</topic><topic>symmetric polynomials on Banach spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zagorodnyuk, Andriy</creatorcontrib><creatorcontrib>Hihliuk, Anna</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zagorodnyuk, Andriy</au><au>Hihliuk, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entire Analytic Functions of Unbounded Type on Banach Spaces and Their Lineability</atitle><jtitle>Axioms</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>10</volume><issue>3</issue><spage>150</spage><pages>150-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms10030150</doi><orcidid>https://orcid.org/0000-0002-5554-4342</orcidid><orcidid>https://orcid.org/0000-0001-9447-5645</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1680 |
ispartof | Axioms, 2021-09, Vol.10 (3), p.150 |
issn | 2075-1680 2075-1680 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5123ee654429447db55aeeffe68faace |
source | Publicly Available Content Database |
subjects | Algebra Analytic functions analytic functions on Banach spaces Banach spaces Entire functions functions of unbounded type Mathematical analysis Polynomials Subspaces symmetric polynomials on Banach spaces |
title | Entire Analytic Functions of Unbounded Type on Banach Spaces and Their Lineability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entire%20Analytic%20Functions%20of%20Unbounded%20Type%20on%20Banach%20Spaces%20and%20Their%20Lineability&rft.jtitle=Axioms&rft.au=Zagorodnyuk,%20Andriy&rft.date=2021-09-01&rft.volume=10&rft.issue=3&rft.spage=150&rft.pages=150-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms10030150&rft_dat=%3Cproquest_doaj_%3E2576379850%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-4a0f6e7177d3c1baf367fc9f74fefa60d89eaf63ef014205ac7a1e6121541df63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576379850&rft_id=info:pmid/&rfr_iscdi=true |