Loading…

Characterizations of Certain Types of Type 2 Soft Graphs

The vertex-neighbors correspondence has an essential role in the structure of a graph. The type 2 soft set is also based on the correspondence of initial parameters and underlying parameters. Recently, type 2 soft graphs have been introduced. Structurally, it is a very efficient model of uncertainty...

Full description

Saved in:
Bibliographic Details
Published in:Discrete dynamics in nature and society 2018-01, Vol.2018 (2018), p.1-15
Main Authors: Karaaslan, Faruk, Ali, M. I., Cao, Bing-Yuan, Hayat, Khizar, Qin, Zejian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243
cites cdi_FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243
container_end_page 15
container_issue 2018
container_start_page 1
container_title Discrete dynamics in nature and society
container_volume 2018
creator Karaaslan, Faruk
Ali, M. I.
Cao, Bing-Yuan
Hayat, Khizar
Qin, Zejian
description The vertex-neighbors correspondence has an essential role in the structure of a graph. The type 2 soft set is also based on the correspondence of initial parameters and underlying parameters. Recently, type 2 soft graphs have been introduced. Structurally, it is a very efficient model of uncertainty to deal with graph neighbors and applicable in applied intelligence, computational analysis, and decision-making. The present paper characterizes type 2 soft graphs on underlying subgraphs (regular subgraphs, irregular subgraphs, cycles, and trees) of a simple graph. We present regular type 2 soft graphs, irregular type 2 soft graphs, and type 2 soft trees. Moreover, we introduce type 2 soft cycles, type 2 soft cut-nodes, and type 2 soft bridges. Finally, we present some operations on type 2 soft trees by presenting several examples to demonstrate these new concepts.
doi_str_mv 10.1155/2018/8535703
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5124ff981a3343a3b01b60bfbc4eadf2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595704781</galeid><doaj_id>oai_doaj_org_article_5124ff981a3343a3b01b60bfbc4eadf2</doaj_id><sourcerecordid>A595704781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243</originalsourceid><addsrcrecordid>eNqFkc1rFEEQxQdRMEZvnmXAo5mk-rvnGBZNAgEPRvDW1PRUZXtJpteeCRL_enszQY_Shy4ev3oU7zXNewGnQhhzJkH4M2-UcaBeNEfCguu8dz9e1hmk7UBK-7p5M887AAm-l0eN32yxYFyopN-4pDzNbeZ2Q2XBNLU3j3t6Eg5DK9tvmZf2ouB-O79tXjHezfTu-T9uvn_5fLO57K6_Xlxtzq-7qK1ZukHEqE0crFERIrPthR2ZvBZGOnaRolNCGYiAcVAEvWLFkdgRkmap1XFztfqOGXdhX9I9lseQMYUnIZfbgGVJ8Y6CEVIz916gUlqhGkAMFgYeoiYcWVavj6vXvuSfDzQvYZcfylTPD1LIeiJY6St1ulK3WE3TxHmpCdU30n2KeSJOVT83fY1ZOy_qwsm6EEue50L890wB4VBMOBQTnoup-KcV36ZpxF_pf_SHlabKEOM_uibonVZ_AERQlVk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126530628</pqid></control><display><type>article</type><title>Characterizations of Certain Types of Type 2 Soft Graphs</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Karaaslan, Faruk ; Ali, M. I. ; Cao, Bing-Yuan ; Hayat, Khizar ; Qin, Zejian</creator><contributor>Peterson, Allan C. ; Allan C Peterson</contributor><creatorcontrib>Karaaslan, Faruk ; Ali, M. I. ; Cao, Bing-Yuan ; Hayat, Khizar ; Qin, Zejian ; Peterson, Allan C. ; Allan C Peterson</creatorcontrib><description>The vertex-neighbors correspondence has an essential role in the structure of a graph. The type 2 soft set is also based on the correspondence of initial parameters and underlying parameters. Recently, type 2 soft graphs have been introduced. Structurally, it is a very efficient model of uncertainty to deal with graph neighbors and applicable in applied intelligence, computational analysis, and decision-making. The present paper characterizes type 2 soft graphs on underlying subgraphs (regular subgraphs, irregular subgraphs, cycles, and trees) of a simple graph. We present regular type 2 soft graphs, irregular type 2 soft graphs, and type 2 soft trees. Moreover, we introduce type 2 soft cycles, type 2 soft cut-nodes, and type 2 soft bridges. Finally, we present some operations on type 2 soft trees by presenting several examples to demonstrate these new concepts.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2018/8535703</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Applied mathematics ; Computers ; Decision analysis ; Decision making ; Graph theory ; Graphs ; Neighborhoods ; Parameters ; Set theory ; Trees (mathematics)</subject><ispartof>Discrete dynamics in nature and society, 2018-01, Vol.2018 (2018), p.1-15</ispartof><rights>Copyright © 2018 Khizar Hayat et al.</rights><rights>COPYRIGHT 2018 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2018 Khizar Hayat et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243</citedby><cites>FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243</cites><orcidid>0000-0002-9454-6324 ; 0000-0003-3589-5441 ; 0000-0002-9684-937X ; 0000-0002-0836-6264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2126530628/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2126530628?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Peterson, Allan C.</contributor><contributor>Allan C Peterson</contributor><creatorcontrib>Karaaslan, Faruk</creatorcontrib><creatorcontrib>Ali, M. I.</creatorcontrib><creatorcontrib>Cao, Bing-Yuan</creatorcontrib><creatorcontrib>Hayat, Khizar</creatorcontrib><creatorcontrib>Qin, Zejian</creatorcontrib><title>Characterizations of Certain Types of Type 2 Soft Graphs</title><title>Discrete dynamics in nature and society</title><description>The vertex-neighbors correspondence has an essential role in the structure of a graph. The type 2 soft set is also based on the correspondence of initial parameters and underlying parameters. Recently, type 2 soft graphs have been introduced. Structurally, it is a very efficient model of uncertainty to deal with graph neighbors and applicable in applied intelligence, computational analysis, and decision-making. The present paper characterizes type 2 soft graphs on underlying subgraphs (regular subgraphs, irregular subgraphs, cycles, and trees) of a simple graph. We present regular type 2 soft graphs, irregular type 2 soft graphs, and type 2 soft trees. Moreover, we introduce type 2 soft cycles, type 2 soft cut-nodes, and type 2 soft bridges. Finally, we present some operations on type 2 soft trees by presenting several examples to demonstrate these new concepts.</description><subject>Applied mathematics</subject><subject>Computers</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Neighborhoods</subject><subject>Parameters</subject><subject>Set theory</subject><subject>Trees (mathematics)</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1rFEEQxQdRMEZvnmXAo5mk-rvnGBZNAgEPRvDW1PRUZXtJpteeCRL_enszQY_Shy4ev3oU7zXNewGnQhhzJkH4M2-UcaBeNEfCguu8dz9e1hmk7UBK-7p5M887AAm-l0eN32yxYFyopN-4pDzNbeZ2Q2XBNLU3j3t6Eg5DK9tvmZf2ouB-O79tXjHezfTu-T9uvn_5fLO57K6_Xlxtzq-7qK1ZukHEqE0crFERIrPthR2ZvBZGOnaRolNCGYiAcVAEvWLFkdgRkmap1XFztfqOGXdhX9I9lseQMYUnIZfbgGVJ8Y6CEVIz916gUlqhGkAMFgYeoiYcWVavj6vXvuSfDzQvYZcfylTPD1LIeiJY6St1ulK3WE3TxHmpCdU30n2KeSJOVT83fY1ZOy_qwsm6EEue50L890wB4VBMOBQTnoup-KcV36ZpxF_pf_SHlabKEOM_uibonVZ_AERQlVk</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Karaaslan, Faruk</creator><creator>Ali, M. I.</creator><creator>Cao, Bing-Yuan</creator><creator>Hayat, Khizar</creator><creator>Qin, Zejian</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9454-6324</orcidid><orcidid>https://orcid.org/0000-0003-3589-5441</orcidid><orcidid>https://orcid.org/0000-0002-9684-937X</orcidid><orcidid>https://orcid.org/0000-0002-0836-6264</orcidid></search><sort><creationdate>20180101</creationdate><title>Characterizations of Certain Types of Type 2 Soft Graphs</title><author>Karaaslan, Faruk ; Ali, M. I. ; Cao, Bing-Yuan ; Hayat, Khizar ; Qin, Zejian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied mathematics</topic><topic>Computers</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Neighborhoods</topic><topic>Parameters</topic><topic>Set theory</topic><topic>Trees (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karaaslan, Faruk</creatorcontrib><creatorcontrib>Ali, M. I.</creatorcontrib><creatorcontrib>Cao, Bing-Yuan</creatorcontrib><creatorcontrib>Hayat, Khizar</creatorcontrib><creatorcontrib>Qin, Zejian</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaaslan, Faruk</au><au>Ali, M. I.</au><au>Cao, Bing-Yuan</au><au>Hayat, Khizar</au><au>Qin, Zejian</au><au>Peterson, Allan C.</au><au>Allan C Peterson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizations of Certain Types of Type 2 Soft Graphs</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>The vertex-neighbors correspondence has an essential role in the structure of a graph. The type 2 soft set is also based on the correspondence of initial parameters and underlying parameters. Recently, type 2 soft graphs have been introduced. Structurally, it is a very efficient model of uncertainty to deal with graph neighbors and applicable in applied intelligence, computational analysis, and decision-making. The present paper characterizes type 2 soft graphs on underlying subgraphs (regular subgraphs, irregular subgraphs, cycles, and trees) of a simple graph. We present regular type 2 soft graphs, irregular type 2 soft graphs, and type 2 soft trees. Moreover, we introduce type 2 soft cycles, type 2 soft cut-nodes, and type 2 soft bridges. Finally, we present some operations on type 2 soft trees by presenting several examples to demonstrate these new concepts.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/8535703</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9454-6324</orcidid><orcidid>https://orcid.org/0000-0003-3589-5441</orcidid><orcidid>https://orcid.org/0000-0002-9684-937X</orcidid><orcidid>https://orcid.org/0000-0002-0836-6264</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1026-0226
ispartof Discrete dynamics in nature and society, 2018-01, Vol.2018 (2018), p.1-15
issn 1026-0226
1607-887X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5124ff981a3343a3b01b60bfbc4eadf2
source Publicly Available Content Database; Wiley Open Access
subjects Applied mathematics
Computers
Decision analysis
Decision making
Graph theory
Graphs
Neighborhoods
Parameters
Set theory
Trees (mathematics)
title Characterizations of Certain Types of Type 2 Soft Graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizations%20of%20Certain%20Types%20of%20Type%202%20Soft%20Graphs&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Karaaslan,%20Faruk&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2018/8535703&rft_dat=%3Cgale_doaj_%3EA595704781%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126530628&rft_id=info:pmid/&rft_galeid=A595704781&rfr_iscdi=true