Loading…
Characterizations of Certain Types of Type 2 Soft Graphs
The vertex-neighbors correspondence has an essential role in the structure of a graph. The type 2 soft set is also based on the correspondence of initial parameters and underlying parameters. Recently, type 2 soft graphs have been introduced. Structurally, it is a very efficient model of uncertainty...
Saved in:
Published in: | Discrete dynamics in nature and society 2018-01, Vol.2018 (2018), p.1-15 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243 |
container_end_page | 15 |
container_issue | 2018 |
container_start_page | 1 |
container_title | Discrete dynamics in nature and society |
container_volume | 2018 |
creator | Karaaslan, Faruk Ali, M. I. Cao, Bing-Yuan Hayat, Khizar Qin, Zejian |
description | The vertex-neighbors correspondence has an essential role in the structure of a graph. The type 2 soft set is also based on the correspondence of initial parameters and underlying parameters. Recently, type 2 soft graphs have been introduced. Structurally, it is a very efficient model of uncertainty to deal with graph neighbors and applicable in applied intelligence, computational analysis, and decision-making. The present paper characterizes type 2 soft graphs on underlying subgraphs (regular subgraphs, irregular subgraphs, cycles, and trees) of a simple graph. We present regular type 2 soft graphs, irregular type 2 soft graphs, and type 2 soft trees. Moreover, we introduce type 2 soft cycles, type 2 soft cut-nodes, and type 2 soft bridges. Finally, we present some operations on type 2 soft trees by presenting several examples to demonstrate these new concepts. |
doi_str_mv | 10.1155/2018/8535703 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5124ff981a3343a3b01b60bfbc4eadf2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595704781</galeid><doaj_id>oai_doaj_org_article_5124ff981a3343a3b01b60bfbc4eadf2</doaj_id><sourcerecordid>A595704781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243</originalsourceid><addsrcrecordid>eNqFkc1rFEEQxQdRMEZvnmXAo5mk-rvnGBZNAgEPRvDW1PRUZXtJpteeCRL_enszQY_Shy4ev3oU7zXNewGnQhhzJkH4M2-UcaBeNEfCguu8dz9e1hmk7UBK-7p5M887AAm-l0eN32yxYFyopN-4pDzNbeZ2Q2XBNLU3j3t6Eg5DK9tvmZf2ouB-O79tXjHezfTu-T9uvn_5fLO57K6_Xlxtzq-7qK1ZukHEqE0crFERIrPthR2ZvBZGOnaRolNCGYiAcVAEvWLFkdgRkmap1XFztfqOGXdhX9I9lseQMYUnIZfbgGVJ8Y6CEVIz916gUlqhGkAMFgYeoiYcWVavj6vXvuSfDzQvYZcfylTPD1LIeiJY6St1ulK3WE3TxHmpCdU30n2KeSJOVT83fY1ZOy_qwsm6EEue50L890wB4VBMOBQTnoup-KcV36ZpxF_pf_SHlabKEOM_uibonVZ_AERQlVk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126530628</pqid></control><display><type>article</type><title>Characterizations of Certain Types of Type 2 Soft Graphs</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Karaaslan, Faruk ; Ali, M. I. ; Cao, Bing-Yuan ; Hayat, Khizar ; Qin, Zejian</creator><contributor>Peterson, Allan C. ; Allan C Peterson</contributor><creatorcontrib>Karaaslan, Faruk ; Ali, M. I. ; Cao, Bing-Yuan ; Hayat, Khizar ; Qin, Zejian ; Peterson, Allan C. ; Allan C Peterson</creatorcontrib><description>The vertex-neighbors correspondence has an essential role in the structure of a graph. The type 2 soft set is also based on the correspondence of initial parameters and underlying parameters. Recently, type 2 soft graphs have been introduced. Structurally, it is a very efficient model of uncertainty to deal with graph neighbors and applicable in applied intelligence, computational analysis, and decision-making. The present paper characterizes type 2 soft graphs on underlying subgraphs (regular subgraphs, irregular subgraphs, cycles, and trees) of a simple graph. We present regular type 2 soft graphs, irregular type 2 soft graphs, and type 2 soft trees. Moreover, we introduce type 2 soft cycles, type 2 soft cut-nodes, and type 2 soft bridges. Finally, we present some operations on type 2 soft trees by presenting several examples to demonstrate these new concepts.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2018/8535703</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Applied mathematics ; Computers ; Decision analysis ; Decision making ; Graph theory ; Graphs ; Neighborhoods ; Parameters ; Set theory ; Trees (mathematics)</subject><ispartof>Discrete dynamics in nature and society, 2018-01, Vol.2018 (2018), p.1-15</ispartof><rights>Copyright © 2018 Khizar Hayat et al.</rights><rights>COPYRIGHT 2018 John Wiley & Sons, Inc.</rights><rights>Copyright © 2018 Khizar Hayat et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243</citedby><cites>FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243</cites><orcidid>0000-0002-9454-6324 ; 0000-0003-3589-5441 ; 0000-0002-9684-937X ; 0000-0002-0836-6264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2126530628/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2126530628?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Peterson, Allan C.</contributor><contributor>Allan C Peterson</contributor><creatorcontrib>Karaaslan, Faruk</creatorcontrib><creatorcontrib>Ali, M. I.</creatorcontrib><creatorcontrib>Cao, Bing-Yuan</creatorcontrib><creatorcontrib>Hayat, Khizar</creatorcontrib><creatorcontrib>Qin, Zejian</creatorcontrib><title>Characterizations of Certain Types of Type 2 Soft Graphs</title><title>Discrete dynamics in nature and society</title><description>The vertex-neighbors correspondence has an essential role in the structure of a graph. The type 2 soft set is also based on the correspondence of initial parameters and underlying parameters. Recently, type 2 soft graphs have been introduced. Structurally, it is a very efficient model of uncertainty to deal with graph neighbors and applicable in applied intelligence, computational analysis, and decision-making. The present paper characterizes type 2 soft graphs on underlying subgraphs (regular subgraphs, irregular subgraphs, cycles, and trees) of a simple graph. We present regular type 2 soft graphs, irregular type 2 soft graphs, and type 2 soft trees. Moreover, we introduce type 2 soft cycles, type 2 soft cut-nodes, and type 2 soft bridges. Finally, we present some operations on type 2 soft trees by presenting several examples to demonstrate these new concepts.</description><subject>Applied mathematics</subject><subject>Computers</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Neighborhoods</subject><subject>Parameters</subject><subject>Set theory</subject><subject>Trees (mathematics)</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1rFEEQxQdRMEZvnmXAo5mk-rvnGBZNAgEPRvDW1PRUZXtJpteeCRL_enszQY_Shy4ev3oU7zXNewGnQhhzJkH4M2-UcaBeNEfCguu8dz9e1hmk7UBK-7p5M887AAm-l0eN32yxYFyopN-4pDzNbeZ2Q2XBNLU3j3t6Eg5DK9tvmZf2ouB-O79tXjHezfTu-T9uvn_5fLO57K6_Xlxtzq-7qK1ZukHEqE0crFERIrPthR2ZvBZGOnaRolNCGYiAcVAEvWLFkdgRkmap1XFztfqOGXdhX9I9lseQMYUnIZfbgGVJ8Y6CEVIz916gUlqhGkAMFgYeoiYcWVavj6vXvuSfDzQvYZcfylTPD1LIeiJY6St1ulK3WE3TxHmpCdU30n2KeSJOVT83fY1ZOy_qwsm6EEue50L890wB4VBMOBQTnoup-KcV36ZpxF_pf_SHlabKEOM_uibonVZ_AERQlVk</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Karaaslan, Faruk</creator><creator>Ali, M. I.</creator><creator>Cao, Bing-Yuan</creator><creator>Hayat, Khizar</creator><creator>Qin, Zejian</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9454-6324</orcidid><orcidid>https://orcid.org/0000-0003-3589-5441</orcidid><orcidid>https://orcid.org/0000-0002-9684-937X</orcidid><orcidid>https://orcid.org/0000-0002-0836-6264</orcidid></search><sort><creationdate>20180101</creationdate><title>Characterizations of Certain Types of Type 2 Soft Graphs</title><author>Karaaslan, Faruk ; Ali, M. I. ; Cao, Bing-Yuan ; Hayat, Khizar ; Qin, Zejian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied mathematics</topic><topic>Computers</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Neighborhoods</topic><topic>Parameters</topic><topic>Set theory</topic><topic>Trees (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karaaslan, Faruk</creatorcontrib><creatorcontrib>Ali, M. I.</creatorcontrib><creatorcontrib>Cao, Bing-Yuan</creatorcontrib><creatorcontrib>Hayat, Khizar</creatorcontrib><creatorcontrib>Qin, Zejian</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaaslan, Faruk</au><au>Ali, M. I.</au><au>Cao, Bing-Yuan</au><au>Hayat, Khizar</au><au>Qin, Zejian</au><au>Peterson, Allan C.</au><au>Allan C Peterson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizations of Certain Types of Type 2 Soft Graphs</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>The vertex-neighbors correspondence has an essential role in the structure of a graph. The type 2 soft set is also based on the correspondence of initial parameters and underlying parameters. Recently, type 2 soft graphs have been introduced. Structurally, it is a very efficient model of uncertainty to deal with graph neighbors and applicable in applied intelligence, computational analysis, and decision-making. The present paper characterizes type 2 soft graphs on underlying subgraphs (regular subgraphs, irregular subgraphs, cycles, and trees) of a simple graph. We present regular type 2 soft graphs, irregular type 2 soft graphs, and type 2 soft trees. Moreover, we introduce type 2 soft cycles, type 2 soft cut-nodes, and type 2 soft bridges. Finally, we present some operations on type 2 soft trees by presenting several examples to demonstrate these new concepts.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/8535703</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9454-6324</orcidid><orcidid>https://orcid.org/0000-0003-3589-5441</orcidid><orcidid>https://orcid.org/0000-0002-9684-937X</orcidid><orcidid>https://orcid.org/0000-0002-0836-6264</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1026-0226 |
ispartof | Discrete dynamics in nature and society, 2018-01, Vol.2018 (2018), p.1-15 |
issn | 1026-0226 1607-887X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5124ff981a3343a3b01b60bfbc4eadf2 |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Applied mathematics Computers Decision analysis Decision making Graph theory Graphs Neighborhoods Parameters Set theory Trees (mathematics) |
title | Characterizations of Certain Types of Type 2 Soft Graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizations%20of%20Certain%20Types%20of%20Type%202%20Soft%20Graphs&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Karaaslan,%20Faruk&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2018/8535703&rft_dat=%3Cgale_doaj_%3EA595704781%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-b1cc45cb653c0cff6916dfe841527f7cec731350c0acb3e093f3fcef7eae4f243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126530628&rft_id=info:pmid/&rft_galeid=A595704781&rfr_iscdi=true |