Loading…

Analysis of Geogrid Reinforced Structures with a Passive Facing System Using Different Computational Methods

The article deals with designing and analysing a wrapped geogrid reinforced structure (GRS) with a passive facing system. The analysis has been done using analytical calculation and numerical modelling. The analytical calculations were executed using FINE Geo5 geotechnical software, and numerical mo...

Full description

Saved in:
Bibliographic Details
Published in:Civil and environmental engineering (Berlin) 2021-12, Vol.17 (2), p.500-512
Main Authors: Sulovska, Monika, Stacho, Jakub
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The article deals with designing and analysing a wrapped geogrid reinforced structure (GRS) with a passive facing system. The analysis has been done using analytical calculation and numerical modelling. The analytical calculations were executed using FINE Geo5 geotechnical software, and numerical modelling was executed using Plaxis 2D software. The analysis is focused mainly on comparing tension forces in geogrids and the stability of the reinforced embankment determined using both computational methods. The deformation analysis was done only using numerical modelling. The numerical modelling allowed for a more detailed analysis of the wrapped GRS. Each construction phase was modelled step by step according to an actual construction procedure. Two complex road embankments supported by GRS were modelled and analysed. The first model consisted of three GRS, which not affected each other. In the second model, the GRS at each side of the embankment influenced each other. The analysis results showed that tension forces in geogrids, determined using both computational methods, can differ significantly from each other. The stability of the reinforced embankment determined using numerical modelling was within the range of 0.87 – 1.22 of the stability determined using analytical calculation. The numerical modelling results showed that the final horizontal deformation of the passive facing is about 2.8 – 3.8 times smaller than the deformation of the wrapped GRS, which occurs during the construction of the embankment.
ISSN:2199-6512
2199-6512
DOI:10.2478/cee-2021-0052