Loading…
SDGH-Net: Ship Detection in Optical Remote Sensing Images Based on Gaussian Heatmap Regression
The ship detection task using optical remote sensing images is important for in maritime safety, port management and ship rescue. With the wide application of deep learning to remote sensing, a series of target detection algorithms, such as faster regions with convolution neural network feature (R-C...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-01, Vol.13 (3), p.499 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ship detection task using optical remote sensing images is important for in maritime safety, port management and ship rescue. With the wide application of deep learning to remote sensing, a series of target detection algorithms, such as faster regions with convolution neural network feature (R-CNN) and You Only Look Once (YOLO), have been developed to detect ships in remote sensing images. These detection algorithms use fully connected layer direct regression to obtain coordinate points. Although training and forward speed are fast, they lack spatial generalization ability. To avoid the over-fitting problem that may arise from the fully connected layer, we propose a fully convolutional neural network, SDGH-Net, based on Gaussian heatmap regression. SDGH-Net uses an encoder–decoder structure to obtain the ship area feature map by direct regression. After simple post-processing, the ship polygon annotation can be obtained without non-maximum suppression (NMS) processing. To speed up model training, we added a batch normalization (BN) processing layer. To increase the receptive field while controlling the number of learning parameters, we introduced dilated convolution and added it at different rates to fuse the features of different scales. We tested the performance of our proposed method using a public ship dataset HRSC2016. The experimental results show that this method improves the recall rate of ships, and the F-measure is 85.05%, which surpasses all other methods we used for comparison. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13030499 |