Loading…

Effects of Population Dynamics on Establishment of a Restriction-Modification System in a Bacterial Host

In vivo dynamics of protein levels in bacterial cells depend on both intracellular regulation and relevant population dynamics. Such population dynamics effects, e.g., interplay between cell and plasmid division rates, are, however, often neglected in modeling gene expression regulation. Including t...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2019-01, Vol.24 (1), p.198
Main Authors: Graovac, Stefan, Rodic, Andjela, Djordjevic, Magdalena, Severinov, Konstantin, Djordjevic, Marko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-a29c166c91a3f8b7b29ff2a92dbf7057e9766b24b58bee996e5ad756bdd562f53
cites cdi_FETCH-LOGICAL-c493t-a29c166c91a3f8b7b29ff2a92dbf7057e9766b24b58bee996e5ad756bdd562f53
container_end_page
container_issue 1
container_start_page 198
container_title Molecules (Basel, Switzerland)
container_volume 24
creator Graovac, Stefan
Rodic, Andjela
Djordjevic, Magdalena
Severinov, Konstantin
Djordjevic, Marko
description In vivo dynamics of protein levels in bacterial cells depend on both intracellular regulation and relevant population dynamics. Such population dynamics effects, e.g., interplay between cell and plasmid division rates, are, however, often neglected in modeling gene expression regulation. Including them in a model introduces additional parameters shared by the dynamical equations, which can significantly increase dimensionality of the parameter inference. We here analyse the importance of these effects, on a case of bacterial restriction-modification (R-M) system. We redevelop our earlier minimal model of this system gene expression regulation, based on a thermodynamic and dynamic system modeling framework, to include the population dynamics effects. To resolve the problem of effective coupling of the dynamical equations, we propose a "mean-field-like" procedure, which allows determining only part of the parameters at a time, by separately fitting them to expression dynamics data of individual molecular species. We show that including the interplay between kinetics of cell division and plasmid replication is necessary to explain the experimental measurements. Moreover, neglecting population dynamics effects can lead to falsely identifying non-existent regulatory mechanisms. Our results call for advanced methods to reverse-engineer intracellular regulation from dynamical data, which would also take into account the population dynamics effects.
doi_str_mv 10.3390/molecules24010198
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_516fe88c454e4421a8206ee9169b375d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_516fe88c454e4421a8206ee9169b375d</doaj_id><sourcerecordid>2549013411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-a29c166c91a3f8b7b29ff2a92dbf7057e9766b24b58bee996e5ad756bdd562f53</originalsourceid><addsrcrecordid>eNplkktv1DAURiMEog_4AWxQJDZsAn4n3iBBGWilIhCPtWU71x2PnHhqO0jz7-thStXCytb1uUe-V1_TvMDoDaUSvZ1iALsEyIQhjLAcHjXHmBHUUcTk43v3o-Yk5w1CBDPMnzZHFAmC0UCPm_XKObAlt9G13-J2Cbr4OLcfd7OevK3luV3lok3weT3BXPacbr9DLsnbPdp9iaN33h76fuxygan1c4U-aFsgeR3a85jLs-aJ0yHD89vztPn1afXz7Ly7_Pr54uz9ZWeZpKXTRFoshJVYUzeY3hDpHNGSjMb1iPcgeyEMYYYPBkBKAVyPPRdmHLkgjtPT5uLgHaPeqG3yk047FbVXfwoxXSmdircBFMfCwTBYxhkwRrAeCBJVioU0tOdjdb07uLaLmWC0df6kwwPpw5fZr9VV_K0EpT3uRRW8vhWkeL3UpanJZwsh6BnikhXBggtBJaUVffUPuolLmuuqFOFMIkwZxpXCB8qmmHMCd_cZjNQ-E-q_TNSel_enuOv4GwJ6A9SItWo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549013411</pqid></control><display><type>article</type><title>Effects of Population Dynamics on Establishment of a Restriction-Modification System in a Bacterial Host</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Graovac, Stefan ; Rodic, Andjela ; Djordjevic, Magdalena ; Severinov, Konstantin ; Djordjevic, Marko</creator><creatorcontrib>Graovac, Stefan ; Rodic, Andjela ; Djordjevic, Magdalena ; Severinov, Konstantin ; Djordjevic, Marko</creatorcontrib><description>In vivo dynamics of protein levels in bacterial cells depend on both intracellular regulation and relevant population dynamics. Such population dynamics effects, e.g., interplay between cell and plasmid division rates, are, however, often neglected in modeling gene expression regulation. Including them in a model introduces additional parameters shared by the dynamical equations, which can significantly increase dimensionality of the parameter inference. We here analyse the importance of these effects, on a case of bacterial restriction-modification (R-M) system. We redevelop our earlier minimal model of this system gene expression regulation, based on a thermodynamic and dynamic system modeling framework, to include the population dynamics effects. To resolve the problem of effective coupling of the dynamical equations, we propose a "mean-field-like" procedure, which allows determining only part of the parameters at a time, by separately fitting them to expression dynamics data of individual molecular species. We show that including the interplay between kinetics of cell division and plasmid replication is necessary to explain the experimental measurements. Moreover, neglecting population dynamics effects can lead to falsely identifying non-existent regulatory mechanisms. Our results call for advanced methods to reverse-engineer intracellular regulation from dynamical data, which would also take into account the population dynamics effects.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules24010198</identifier><identifier>PMID: 30621083</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bacteria ; Bacteria - chemistry ; Bacteria - genetics ; bacterial population dynamics ; Binding sites ; Cell division ; Cell Division - genetics ; DNA Replication - genetics ; Equilibrium ; Experiments ; Gene expression ; gene expression control ; Gene Expression Regulation ; Gene regulation ; Intracellular ; Kinetics ; Modelling ; Models, Biological ; Physiology ; Plasmids ; Plasmids - genetics ; Population ; Population Dynamics ; Protein expression ; Proteins ; Restriction-modification ; restriction-modification systems ; RNA polymerase ; statistical thermodynamics ; Synthetic biology ; Thermodynamics ; transcription regulation</subject><ispartof>Molecules (Basel, Switzerland), 2019-01, Vol.24 (1), p.198</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-a29c166c91a3f8b7b29ff2a92dbf7057e9766b24b58bee996e5ad756bdd562f53</citedby><cites>FETCH-LOGICAL-c493t-a29c166c91a3f8b7b29ff2a92dbf7057e9766b24b58bee996e5ad756bdd562f53</cites><orcidid>0000-0002-2903-3119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2549013411/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2549013411?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30621083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Graovac, Stefan</creatorcontrib><creatorcontrib>Rodic, Andjela</creatorcontrib><creatorcontrib>Djordjevic, Magdalena</creatorcontrib><creatorcontrib>Severinov, Konstantin</creatorcontrib><creatorcontrib>Djordjevic, Marko</creatorcontrib><title>Effects of Population Dynamics on Establishment of a Restriction-Modification System in a Bacterial Host</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>In vivo dynamics of protein levels in bacterial cells depend on both intracellular regulation and relevant population dynamics. Such population dynamics effects, e.g., interplay between cell and plasmid division rates, are, however, often neglected in modeling gene expression regulation. Including them in a model introduces additional parameters shared by the dynamical equations, which can significantly increase dimensionality of the parameter inference. We here analyse the importance of these effects, on a case of bacterial restriction-modification (R-M) system. We redevelop our earlier minimal model of this system gene expression regulation, based on a thermodynamic and dynamic system modeling framework, to include the population dynamics effects. To resolve the problem of effective coupling of the dynamical equations, we propose a "mean-field-like" procedure, which allows determining only part of the parameters at a time, by separately fitting them to expression dynamics data of individual molecular species. We show that including the interplay between kinetics of cell division and plasmid replication is necessary to explain the experimental measurements. Moreover, neglecting population dynamics effects can lead to falsely identifying non-existent regulatory mechanisms. Our results call for advanced methods to reverse-engineer intracellular regulation from dynamical data, which would also take into account the population dynamics effects.</description><subject>Bacteria</subject><subject>Bacteria - chemistry</subject><subject>Bacteria - genetics</subject><subject>bacterial population dynamics</subject><subject>Binding sites</subject><subject>Cell division</subject><subject>Cell Division - genetics</subject><subject>DNA Replication - genetics</subject><subject>Equilibrium</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>gene expression control</subject><subject>Gene Expression Regulation</subject><subject>Gene regulation</subject><subject>Intracellular</subject><subject>Kinetics</subject><subject>Modelling</subject><subject>Models, Biological</subject><subject>Physiology</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>Population</subject><subject>Population Dynamics</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Restriction-modification</subject><subject>restriction-modification systems</subject><subject>RNA polymerase</subject><subject>statistical thermodynamics</subject><subject>Synthetic biology</subject><subject>Thermodynamics</subject><subject>transcription regulation</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkktv1DAURiMEog_4AWxQJDZsAn4n3iBBGWilIhCPtWU71x2PnHhqO0jz7-thStXCytb1uUe-V1_TvMDoDaUSvZ1iALsEyIQhjLAcHjXHmBHUUcTk43v3o-Yk5w1CBDPMnzZHFAmC0UCPm_XKObAlt9G13-J2Cbr4OLcfd7OevK3luV3lok3weT3BXPacbr9DLsnbPdp9iaN33h76fuxygan1c4U-aFsgeR3a85jLs-aJ0yHD89vztPn1afXz7Ly7_Pr54uz9ZWeZpKXTRFoshJVYUzeY3hDpHNGSjMb1iPcgeyEMYYYPBkBKAVyPPRdmHLkgjtPT5uLgHaPeqG3yk047FbVXfwoxXSmdircBFMfCwTBYxhkwRrAeCBJVioU0tOdjdb07uLaLmWC0df6kwwPpw5fZr9VV_K0EpT3uRRW8vhWkeL3UpanJZwsh6BnikhXBggtBJaUVffUPuolLmuuqFOFMIkwZxpXCB8qmmHMCd_cZjNQ-E-q_TNSel_enuOv4GwJ6A9SItWo</recordid><startdate>20190107</startdate><enddate>20190107</enddate><creator>Graovac, Stefan</creator><creator>Rodic, Andjela</creator><creator>Djordjevic, Magdalena</creator><creator>Severinov, Konstantin</creator><creator>Djordjevic, Marko</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2903-3119</orcidid></search><sort><creationdate>20190107</creationdate><title>Effects of Population Dynamics on Establishment of a Restriction-Modification System in a Bacterial Host</title><author>Graovac, Stefan ; Rodic, Andjela ; Djordjevic, Magdalena ; Severinov, Konstantin ; Djordjevic, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-a29c166c91a3f8b7b29ff2a92dbf7057e9766b24b58bee996e5ad756bdd562f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacteria</topic><topic>Bacteria - chemistry</topic><topic>Bacteria - genetics</topic><topic>bacterial population dynamics</topic><topic>Binding sites</topic><topic>Cell division</topic><topic>Cell Division - genetics</topic><topic>DNA Replication - genetics</topic><topic>Equilibrium</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>gene expression control</topic><topic>Gene Expression Regulation</topic><topic>Gene regulation</topic><topic>Intracellular</topic><topic>Kinetics</topic><topic>Modelling</topic><topic>Models, Biological</topic><topic>Physiology</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>Population</topic><topic>Population Dynamics</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Restriction-modification</topic><topic>restriction-modification systems</topic><topic>RNA polymerase</topic><topic>statistical thermodynamics</topic><topic>Synthetic biology</topic><topic>Thermodynamics</topic><topic>transcription regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graovac, Stefan</creatorcontrib><creatorcontrib>Rodic, Andjela</creatorcontrib><creatorcontrib>Djordjevic, Magdalena</creatorcontrib><creatorcontrib>Severinov, Konstantin</creatorcontrib><creatorcontrib>Djordjevic, Marko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graovac, Stefan</au><au>Rodic, Andjela</au><au>Djordjevic, Magdalena</au><au>Severinov, Konstantin</au><au>Djordjevic, Marko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Population Dynamics on Establishment of a Restriction-Modification System in a Bacterial Host</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2019-01-07</date><risdate>2019</risdate><volume>24</volume><issue>1</issue><spage>198</spage><pages>198-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>In vivo dynamics of protein levels in bacterial cells depend on both intracellular regulation and relevant population dynamics. Such population dynamics effects, e.g., interplay between cell and plasmid division rates, are, however, often neglected in modeling gene expression regulation. Including them in a model introduces additional parameters shared by the dynamical equations, which can significantly increase dimensionality of the parameter inference. We here analyse the importance of these effects, on a case of bacterial restriction-modification (R-M) system. We redevelop our earlier minimal model of this system gene expression regulation, based on a thermodynamic and dynamic system modeling framework, to include the population dynamics effects. To resolve the problem of effective coupling of the dynamical equations, we propose a "mean-field-like" procedure, which allows determining only part of the parameters at a time, by separately fitting them to expression dynamics data of individual molecular species. We show that including the interplay between kinetics of cell division and plasmid replication is necessary to explain the experimental measurements. Moreover, neglecting population dynamics effects can lead to falsely identifying non-existent regulatory mechanisms. Our results call for advanced methods to reverse-engineer intracellular regulation from dynamical data, which would also take into account the population dynamics effects.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30621083</pmid><doi>10.3390/molecules24010198</doi><orcidid>https://orcid.org/0000-0002-2903-3119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2019-01, Vol.24 (1), p.198
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_516fe88c454e4421a8206ee9169b375d
source PubMed (Medline); Publicly Available Content (ProQuest)
subjects Bacteria
Bacteria - chemistry
Bacteria - genetics
bacterial population dynamics
Binding sites
Cell division
Cell Division - genetics
DNA Replication - genetics
Equilibrium
Experiments
Gene expression
gene expression control
Gene Expression Regulation
Gene regulation
Intracellular
Kinetics
Modelling
Models, Biological
Physiology
Plasmids
Plasmids - genetics
Population
Population Dynamics
Protein expression
Proteins
Restriction-modification
restriction-modification systems
RNA polymerase
statistical thermodynamics
Synthetic biology
Thermodynamics
transcription regulation
title Effects of Population Dynamics on Establishment of a Restriction-Modification System in a Bacterial Host
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Population%20Dynamics%20on%20Establishment%20of%20a%20Restriction-Modification%20System%20in%20a%20Bacterial%20Host&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Graovac,%20Stefan&rft.date=2019-01-07&rft.volume=24&rft.issue=1&rft.spage=198&rft.pages=198-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules24010198&rft_dat=%3Cproquest_doaj_%3E2549013411%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-a29c166c91a3f8b7b29ff2a92dbf7057e9766b24b58bee996e5ad756bdd562f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2549013411&rft_id=info:pmid/30621083&rfr_iscdi=true