Loading…
Synthesis of Ceramic Reinforcements in Metallic Matrices during Spark Plasma Sintering: Consideration of Reactant/Matrix Mutual Chemistry
Metal–ceramic composites are obtained via ex-situ or in-situ routes. The in-situ route implies the synthesis of reinforcement in the presence of a matrix and is often regarded as providing more flexibility to the microstructure design of composites than the ex-situ route. Spark plasma sintering (SPS...
Saved in:
Published in: | Ceramics 2021-12, Vol.4 (4), p.592-599 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metal–ceramic composites are obtained via ex-situ or in-situ routes. The in-situ route implies the synthesis of reinforcement in the presence of a matrix and is often regarded as providing more flexibility to the microstructure design of composites than the ex-situ route. Spark plasma sintering (SPS) is an advanced sintering method that allows fast consolidation of various powder materials up to full or nearly full density. In reactive SPS, the synthesis and consolidation are combined in a single processing step, which corresponds to the in-situ route. In this article, we discuss the peculiarities of synthesis of ceramic reinforcements in metallic matrices during SPS with a particular consideration of reactant/matrix mutual chemistry. The formation of carbide reinforcements in Cu, Al, and Ni matrices is given attention with examples elaborated in the authors’ own research. Factors determining the suitability of reactive SPS for manufacturing of composites from a matrix/reactants system and features of the structural evolution of the reaction mixture during sintering are discussed. |
---|---|
ISSN: | 2571-6131 2571-6131 |
DOI: | 10.3390/ceramics4040042 |