Loading…

Molecular dynamic, Hirshfeld surface, molecular docking and drug likeness studies of a potent anti-oxidant, anti-malaria and anti-Inflammatory medicine: Pyrogallol

[Display omitted] •The crystal intermolecular interactions were studied by Hirshfeld surface analysis, donor acceptor interactions.•Pyrogallol was also studied for Fukui function analysis and Molecular Electrostatic Potential (MEP).•Pyrogallol is biologically important and can interact with differen...

Full description

Saved in:
Bibliographic Details
Published in:Results in Chemistry 2023-01, Vol.5, p.100763, Article 100763
Main Authors: Amin Mir, M., Manzer Manhas, Farah, Andrews, Kim, Hasnain, Syed M, Iqbal, Abid, Sehar, Shama, Younis, Adnan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •The crystal intermolecular interactions were studied by Hirshfeld surface analysis, donor acceptor interactions.•Pyrogallol was also studied for Fukui function analysis and Molecular Electrostatic Potential (MEP).•Pyrogallol is biologically important and can interact with different proteins with binding energy of 7.405 and 5.718 kcal/mol.•The drug-likeness studies of Pyrogallol behaves as an antibiotic with close relationship to Ascorbic Acid, Gallic acid, Ellagic acid, Hexahydroxy, diphenic acid. Pyrogallol (1, 2, 3-trihydroxybenzene) was studied by computational study analysis using density functional theory (DFT), B3LYP method using 6-311++G (d, p) as basis set. The computational study was done involving IR, UV–visible, H NMR and other parameters like, AIM theory (Atoms in molecules) for ellipticity, isosurface projection analysis, and binding energies, which run parallel to experimental values. The crystal intermolecular interactions were studied by Hirshfeld surface analysis, and donor and acceptor interactions were studied by NBO analysis. By Pyrogallol was also studied for Fukui function analysis and Molecular Electrostatic Potential (MEP) and for the nucleophilic and electrophilic sites of interactions. As per the results of energy difference in frontier molecular orbitals as calculated viz, HOMO and LUMO clearly shows Pyrogallol is stable molecule. The electrophilicity index, and molecular docking studies show that Pyrogallol is biologically important and can interact with different proteins with binding energy of 7.405 and 5.718 kcal/mol. The biomolecular stability involves molecular dynamic simulation. The drug-likeness studies have shown that Pyrogallol as an antibiotic shows close relationship with Ascorbic Acid, Gallic acid, Ellagic acid, Hexahydroxy, diphenic acid
ISSN:2211-7156
2211-7156
DOI:10.1016/j.rechem.2023.100763