Loading…
Molecular dynamic, Hirshfeld surface, molecular docking and drug likeness studies of a potent anti-oxidant, anti-malaria and anti-Inflammatory medicine: Pyrogallol
[Display omitted] •The crystal intermolecular interactions were studied by Hirshfeld surface analysis, donor acceptor interactions.•Pyrogallol was also studied for Fukui function analysis and Molecular Electrostatic Potential (MEP).•Pyrogallol is biologically important and can interact with differen...
Saved in:
Published in: | Results in Chemistry 2023-01, Vol.5, p.100763, Article 100763 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
•The crystal intermolecular interactions were studied by Hirshfeld surface analysis, donor acceptor interactions.•Pyrogallol was also studied for Fukui function analysis and Molecular Electrostatic Potential (MEP).•Pyrogallol is biologically important and can interact with different proteins with binding energy of 7.405 and 5.718 kcal/mol.•The drug-likeness studies of Pyrogallol behaves as an antibiotic with close relationship to Ascorbic Acid, Gallic acid, Ellagic acid, Hexahydroxy, diphenic acid.
Pyrogallol (1, 2, 3-trihydroxybenzene) was studied by computational study analysis using density functional theory (DFT), B3LYP method using 6-311++G (d, p) as basis set. The computational study was done involving IR, UV–visible, H NMR and other parameters like, AIM theory (Atoms in molecules) for ellipticity, isosurface projection analysis, and binding energies, which run parallel to experimental values. The crystal intermolecular interactions were studied by Hirshfeld surface analysis, and donor and acceptor interactions were studied by NBO analysis. By Pyrogallol was also studied for Fukui function analysis and Molecular Electrostatic Potential (MEP) and for the nucleophilic and electrophilic sites of interactions. As per the results of energy difference in frontier molecular orbitals as calculated viz, HOMO and LUMO clearly shows Pyrogallol is stable molecule. The electrophilicity index, and molecular docking studies show that Pyrogallol is biologically important and can interact with different proteins with binding energy of 7.405 and 5.718 kcal/mol. The biomolecular stability involves molecular dynamic simulation. The drug-likeness studies have shown that Pyrogallol as an antibiotic shows close relationship with Ascorbic Acid, Gallic acid, Ellagic acid, Hexahydroxy, diphenic acid |
---|---|
ISSN: | 2211-7156 2211-7156 |
DOI: | 10.1016/j.rechem.2023.100763 |