Loading…
Prediction of early clinical response to neoadjuvant chemotherapy in Triple-negative breast cancer: Incorporating Radiomics through breast MRI
This study assessed pretreatment breast MRI coupled with machine learning for predicting early clinical responses to neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC), focusing on identifying non-responders. A retrospective analysis of 135 TNBC patients (107 responders, 28 non-r...
Saved in:
Published in: | Scientific reports 2024-09, Vol.14 (1), p.21691-13, Article 21691 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-146679c9ddefce057439b648c32141dee0a4372a98b120879b65724daae1e0b33 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 21691 |
container_title | Scientific reports |
container_volume | 14 |
creator | Lee, Hyo-jae Lee, Jeong Hoon Lee, Jong Eun Na, Yong Min Park, Min Ho Lee, Ji Shin Lim, Hyo Soon |
description | This study assessed pretreatment breast MRI coupled with machine learning for predicting early clinical responses to neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC), focusing on identifying non-responders. A retrospective analysis of 135 TNBC patients (107 responders, 28 non-responders) treated with NAC from January 2015 to October 2022 was conducted. Non-responders were defined according to RECIST guidelines. Data included clinicopathologic factors and clinical MRI findings, with radiomics features from contrast-enhanced T1-weighted images, to train a stacking ensemble of 13 machine learning models. For subgroup analysis, propensity score matching was conducted to adjust for clinical disparities in NAC response. The efficacy of the models was evaluated using the area under the receiver-operating-characteristic curve (AUROC) before and after matching. The model combining clinicopathologic factors and clinical MRI findings achieved an AUROC of 0.752 (95% CI 0.644–0.860) for predicting non-responders, while radiomics-based models showed 0.749 (95% CI 0.614–0.884). An integrated model of radiomics, clinicopathologic factors, and clinical MRI findings reached an AUROC of 0.802 (95% CI 0.699–0.905). After propensity score matching, the hierarchical order of key radiomics features remained consistent. Our study demonstrated the potential of using machine learning models based on pretreatment MRI to non-invasively predict TNBC non-responders to NAC. |
doi_str_mv | 10.1038/s41598-024-72581-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_51ded7f12571493cb106bb70974334a2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_51ded7f12571493cb106bb70974334a2</doaj_id><sourcerecordid>3106223896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-146679c9ddefce057439b648c32141dee0a4372a98b120879b65724daae1e0b33</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7BAltiwCfh3ErNBqOJnpCJQVdbWjXOT8Sixg52MNC_BM-POtKVlgTe2fL57rn11iuIlo28ZFfW7JJnSdUm5LCuualbunxSnnEpVcsH50wfnk-I8pS3NS3EtmX5enAjNa61odVr8_hGxdXZ2wZPQEYQ47IkdnHcWBhIxTcEnJHMgHgO022UHfiZ2g2OYNxhh2hPnyXV004Clxx5mt0PSRISUMfAW43uy9jbEKcQs-p5cQevC6Gwi8yaGpd_c4d-u1i-KZx0MCc9v97Pi5-dP1xdfy8vvX9YXHy9LKzmfSyZXq0pb3bbYWaSqkkI3K1lbwZlkLSIFKSoOum4Yp3WVRVVx2QIgQ9oIcVasj75tgK2Zohsh7k0AZw4XIfYG4uzsgEZlv7bqGFcVk1rYhtFV01RU56ZCAs9eH45e09KM2Fr0c4ThkeljxbuN6cPOMCZpLfWNw5tbhxh-LZhmM7pkcRggD31JRuSWUmktVUZf_4NuwxJ9ntWB4lzUepUpfqRsDClF7O5fw6i5iY85xsfk-JhDfMw-F716-I_7kruwZEAcgZQl32P82_s_tn8ANljS3Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106223896</pqid></control><display><type>article</type><title>Prediction of early clinical response to neoadjuvant chemotherapy in Triple-negative breast cancer: Incorporating Radiomics through breast MRI</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lee, Hyo-jae ; Lee, Jeong Hoon ; Lee, Jong Eun ; Na, Yong Min ; Park, Min Ho ; Lee, Ji Shin ; Lim, Hyo Soon</creator><creatorcontrib>Lee, Hyo-jae ; Lee, Jeong Hoon ; Lee, Jong Eun ; Na, Yong Min ; Park, Min Ho ; Lee, Ji Shin ; Lim, Hyo Soon</creatorcontrib><description>This study assessed pretreatment breast MRI coupled with machine learning for predicting early clinical responses to neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC), focusing on identifying non-responders. A retrospective analysis of 135 TNBC patients (107 responders, 28 non-responders) treated with NAC from January 2015 to October 2022 was conducted. Non-responders were defined according to RECIST guidelines. Data included clinicopathologic factors and clinical MRI findings, with radiomics features from contrast-enhanced T1-weighted images, to train a stacking ensemble of 13 machine learning models. For subgroup analysis, propensity score matching was conducted to adjust for clinical disparities in NAC response. The efficacy of the models was evaluated using the area under the receiver-operating-characteristic curve (AUROC) before and after matching. The model combining clinicopathologic factors and clinical MRI findings achieved an AUROC of 0.752 (95% CI 0.644–0.860) for predicting non-responders, while radiomics-based models showed 0.749 (95% CI 0.614–0.884). An integrated model of radiomics, clinicopathologic factors, and clinical MRI findings reached an AUROC of 0.802 (95% CI 0.699–0.905). After propensity score matching, the hierarchical order of key radiomics features remained consistent. Our study demonstrated the potential of using machine learning models based on pretreatment MRI to non-invasively predict TNBC non-responders to NAC.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-72581-y</identifier><identifier>PMID: 39289507</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/308 ; 692/4028 ; Adult ; Aged ; Breast - diagnostic imaging ; Breast - pathology ; Breast cancer ; Chemotherapy ; Female ; Humanities and Social Sciences ; Humans ; Learning algorithms ; Machine Learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Middle Aged ; multidisciplinary ; Neoadjuvant Therapy ; Radiomics ; Retrospective Studies ; ROC Curve ; Science ; Science (multidisciplinary) ; Treatment Outcome ; Triple Negative Breast Neoplasms - diagnostic imaging ; Triple Negative Breast Neoplasms - drug therapy ; Triple Negative Breast Neoplasms - pathology</subject><ispartof>Scientific reports, 2024-09, Vol.14 (1), p.21691-13, Article 21691</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-146679c9ddefce057439b648c32141dee0a4372a98b120879b65724daae1e0b33</cites><orcidid>0000-0002-8754-6801 ; 0000-0002-7046-3874 ; 0000-0002-0911-4587 ; 0000-0001-6742-499X ; 0000-0002-1789-8270 ; 0000-0001-7770-6800 ; 0000-0002-6366-8249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3106223896/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3106223896?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39289507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hyo-jae</creatorcontrib><creatorcontrib>Lee, Jeong Hoon</creatorcontrib><creatorcontrib>Lee, Jong Eun</creatorcontrib><creatorcontrib>Na, Yong Min</creatorcontrib><creatorcontrib>Park, Min Ho</creatorcontrib><creatorcontrib>Lee, Ji Shin</creatorcontrib><creatorcontrib>Lim, Hyo Soon</creatorcontrib><title>Prediction of early clinical response to neoadjuvant chemotherapy in Triple-negative breast cancer: Incorporating Radiomics through breast MRI</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This study assessed pretreatment breast MRI coupled with machine learning for predicting early clinical responses to neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC), focusing on identifying non-responders. A retrospective analysis of 135 TNBC patients (107 responders, 28 non-responders) treated with NAC from January 2015 to October 2022 was conducted. Non-responders were defined according to RECIST guidelines. Data included clinicopathologic factors and clinical MRI findings, with radiomics features from contrast-enhanced T1-weighted images, to train a stacking ensemble of 13 machine learning models. For subgroup analysis, propensity score matching was conducted to adjust for clinical disparities in NAC response. The efficacy of the models was evaluated using the area under the receiver-operating-characteristic curve (AUROC) before and after matching. The model combining clinicopathologic factors and clinical MRI findings achieved an AUROC of 0.752 (95% CI 0.644–0.860) for predicting non-responders, while radiomics-based models showed 0.749 (95% CI 0.614–0.884). An integrated model of radiomics, clinicopathologic factors, and clinical MRI findings reached an AUROC of 0.802 (95% CI 0.699–0.905). After propensity score matching, the hierarchical order of key radiomics features remained consistent. Our study demonstrated the potential of using machine learning models based on pretreatment MRI to non-invasively predict TNBC non-responders to NAC.</description><subject>692/308</subject><subject>692/4028</subject><subject>Adult</subject><subject>Aged</subject><subject>Breast - diagnostic imaging</subject><subject>Breast - pathology</subject><subject>Breast cancer</subject><subject>Chemotherapy</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Neoadjuvant Therapy</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Treatment Outcome</subject><subject>Triple Negative Breast Neoplasms - diagnostic imaging</subject><subject>Triple Negative Breast Neoplasms - drug therapy</subject><subject>Triple Negative Breast Neoplasms - pathology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7BAltiwCfh3ErNBqOJnpCJQVdbWjXOT8Sixg52MNC_BM-POtKVlgTe2fL57rn11iuIlo28ZFfW7JJnSdUm5LCuualbunxSnnEpVcsH50wfnk-I8pS3NS3EtmX5enAjNa61odVr8_hGxdXZ2wZPQEYQ47IkdnHcWBhIxTcEnJHMgHgO022UHfiZ2g2OYNxhh2hPnyXV004Clxx5mt0PSRISUMfAW43uy9jbEKcQs-p5cQevC6Gwi8yaGpd_c4d-u1i-KZx0MCc9v97Pi5-dP1xdfy8vvX9YXHy9LKzmfSyZXq0pb3bbYWaSqkkI3K1lbwZlkLSIFKSoOum4Yp3WVRVVx2QIgQ9oIcVasj75tgK2Zohsh7k0AZw4XIfYG4uzsgEZlv7bqGFcVk1rYhtFV01RU56ZCAs9eH45e09KM2Fr0c4ThkeljxbuN6cPOMCZpLfWNw5tbhxh-LZhmM7pkcRggD31JRuSWUmktVUZf_4NuwxJ9ntWB4lzUepUpfqRsDClF7O5fw6i5iY85xsfk-JhDfMw-F716-I_7kruwZEAcgZQl32P82_s_tn8ANljS3Q</recordid><startdate>20240917</startdate><enddate>20240917</enddate><creator>Lee, Hyo-jae</creator><creator>Lee, Jeong Hoon</creator><creator>Lee, Jong Eun</creator><creator>Na, Yong Min</creator><creator>Park, Min Ho</creator><creator>Lee, Ji Shin</creator><creator>Lim, Hyo Soon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8754-6801</orcidid><orcidid>https://orcid.org/0000-0002-7046-3874</orcidid><orcidid>https://orcid.org/0000-0002-0911-4587</orcidid><orcidid>https://orcid.org/0000-0001-6742-499X</orcidid><orcidid>https://orcid.org/0000-0002-1789-8270</orcidid><orcidid>https://orcid.org/0000-0001-7770-6800</orcidid><orcidid>https://orcid.org/0000-0002-6366-8249</orcidid></search><sort><creationdate>20240917</creationdate><title>Prediction of early clinical response to neoadjuvant chemotherapy in Triple-negative breast cancer: Incorporating Radiomics through breast MRI</title><author>Lee, Hyo-jae ; Lee, Jeong Hoon ; Lee, Jong Eun ; Na, Yong Min ; Park, Min Ho ; Lee, Ji Shin ; Lim, Hyo Soon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-146679c9ddefce057439b648c32141dee0a4372a98b120879b65724daae1e0b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>692/308</topic><topic>692/4028</topic><topic>Adult</topic><topic>Aged</topic><topic>Breast - diagnostic imaging</topic><topic>Breast - pathology</topic><topic>Breast cancer</topic><topic>Chemotherapy</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Neoadjuvant Therapy</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Treatment Outcome</topic><topic>Triple Negative Breast Neoplasms - diagnostic imaging</topic><topic>Triple Negative Breast Neoplasms - drug therapy</topic><topic>Triple Negative Breast Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyo-jae</creatorcontrib><creatorcontrib>Lee, Jeong Hoon</creatorcontrib><creatorcontrib>Lee, Jong Eun</creatorcontrib><creatorcontrib>Na, Yong Min</creatorcontrib><creatorcontrib>Park, Min Ho</creatorcontrib><creatorcontrib>Lee, Ji Shin</creatorcontrib><creatorcontrib>Lim, Hyo Soon</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyo-jae</au><au>Lee, Jeong Hoon</au><au>Lee, Jong Eun</au><au>Na, Yong Min</au><au>Park, Min Ho</au><au>Lee, Ji Shin</au><au>Lim, Hyo Soon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of early clinical response to neoadjuvant chemotherapy in Triple-negative breast cancer: Incorporating Radiomics through breast MRI</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-09-17</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>21691</spage><epage>13</epage><pages>21691-13</pages><artnum>21691</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This study assessed pretreatment breast MRI coupled with machine learning for predicting early clinical responses to neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC), focusing on identifying non-responders. A retrospective analysis of 135 TNBC patients (107 responders, 28 non-responders) treated with NAC from January 2015 to October 2022 was conducted. Non-responders were defined according to RECIST guidelines. Data included clinicopathologic factors and clinical MRI findings, with radiomics features from contrast-enhanced T1-weighted images, to train a stacking ensemble of 13 machine learning models. For subgroup analysis, propensity score matching was conducted to adjust for clinical disparities in NAC response. The efficacy of the models was evaluated using the area under the receiver-operating-characteristic curve (AUROC) before and after matching. The model combining clinicopathologic factors and clinical MRI findings achieved an AUROC of 0.752 (95% CI 0.644–0.860) for predicting non-responders, while radiomics-based models showed 0.749 (95% CI 0.614–0.884). An integrated model of radiomics, clinicopathologic factors, and clinical MRI findings reached an AUROC of 0.802 (95% CI 0.699–0.905). After propensity score matching, the hierarchical order of key radiomics features remained consistent. Our study demonstrated the potential of using machine learning models based on pretreatment MRI to non-invasively predict TNBC non-responders to NAC.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39289507</pmid><doi>10.1038/s41598-024-72581-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8754-6801</orcidid><orcidid>https://orcid.org/0000-0002-7046-3874</orcidid><orcidid>https://orcid.org/0000-0002-0911-4587</orcidid><orcidid>https://orcid.org/0000-0001-6742-499X</orcidid><orcidid>https://orcid.org/0000-0002-1789-8270</orcidid><orcidid>https://orcid.org/0000-0001-7770-6800</orcidid><orcidid>https://orcid.org/0000-0002-6366-8249</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-09, Vol.14 (1), p.21691-13, Article 21691 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_51ded7f12571493cb106bb70974334a2 |
source | PubMed Central Free; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 692/308 692/4028 Adult Aged Breast - diagnostic imaging Breast - pathology Breast cancer Chemotherapy Female Humanities and Social Sciences Humans Learning algorithms Machine Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Middle Aged multidisciplinary Neoadjuvant Therapy Radiomics Retrospective Studies ROC Curve Science Science (multidisciplinary) Treatment Outcome Triple Negative Breast Neoplasms - diagnostic imaging Triple Negative Breast Neoplasms - drug therapy Triple Negative Breast Neoplasms - pathology |
title | Prediction of early clinical response to neoadjuvant chemotherapy in Triple-negative breast cancer: Incorporating Radiomics through breast MRI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20early%20clinical%20response%20to%20neoadjuvant%20chemotherapy%20in%20Triple-negative%20breast%20cancer:%20Incorporating%20Radiomics%20through%20breast%20MRI&rft.jtitle=Scientific%20reports&rft.au=Lee,%20Hyo-jae&rft.date=2024-09-17&rft.volume=14&rft.issue=1&rft.spage=21691&rft.epage=13&rft.pages=21691-13&rft.artnum=21691&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-72581-y&rft_dat=%3Cproquest_doaj_%3E3106223896%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-146679c9ddefce057439b648c32141dee0a4372a98b120879b65724daae1e0b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106223896&rft_id=info:pmid/39289507&rfr_iscdi=true |