Loading…

Measuring Trace Gas Emission from Multi-Distributed Sources Using Vertical Radial Plume Mapping (VRPM) and Backward Lagrangian Stochastic (bLS) Techniques

Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The vertical radial plume mapping (VRPM) and the backward Lagrangian stochastic (bLS) techniques with an open-path optical spectroscopic s...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2011-09, Vol.2 (3), p.553-566
Main Authors: Ro, Kyoung S., Johnson, Melvin H., Hunt, Patrick G., Flesch, Thomas K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The vertical radial plume mapping (VRPM) and the backward Lagrangian stochastic (bLS) techniques with an open-path optical spectroscopic sensor were evaluated for relative accuracy for multiple emission-source and sensor configurations. The relative accuracy was calculated by dividing the measured emission rate by the actual emission rate; thus, a relative accuracy of 1.0 represents a perfect measure. For a single area emission source, the VRPM technique yielded a somewhat high relative accuracy of 1.38 ± 0.28. The bLS technique resulted in a relative accuracy close to unity, 0.98 ± 0.24. Relative accuracies for dual source emissions for the VRPM and bLS techniques were somewhat similar to single source emissions, 1.23 ± 0.17 and 0.94 ± 0.24, respectively. When the bLS technique was used with vertical point concentrations, the relative accuracy was unacceptably low.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos2030553