Loading…
Harnessing large language models to auto-evaluate the student project reports
Addressing the problem of the difficulty in providing timely and reasonable feedback evaluation for student project reports, this paper proposes a method based on LLMs (Large Language Models) that can automatically generate instant feedback evaluations for student project reports. Three LLMs, namely...
Saved in:
Published in: | Computers and education. Artificial intelligence 2024-12, Vol.7, p.100268, Article 100268 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2098-e6e50131a0daa580269cc6eb270c578f414ef6369829ba083f8c8160b03178733 |
container_end_page | |
container_issue | |
container_start_page | 100268 |
container_title | Computers and education. Artificial intelligence |
container_volume | 7 |
creator | Du, Haoze Jia, Qinjin Gehringer, Edward Wang, Xianfang |
description | Addressing the problem of the difficulty in providing timely and reasonable feedback evaluation for student project reports, this paper proposes a method based on LLMs (Large Language Models) that can automatically generate instant feedback evaluations for student project reports. Three LLMs, namely BART (Bidirectional and Auto-Regressive Transformer), CPTB (chatgpt_paraphraser_on_T5_base), and CGP-BLCS (chatgpt-gpt4-prompts-bart-large-cnn-samsum), were designed to generate instant text feedback pre-training models for student project reports. The effectiveness of the feedback was evaluated using ROUGE Metrics, BERT Scores, and human expert evaluations. Experiments showed that the lightweight, fine-tuned BART model, when trained on a larger dataset of 80%, generated effective feedback evaluations for student project reports. When trained on a smaller dataset of 20%, both the BART and CPTB models had unsatisfactory overall performance, while the fine-tuned CGP-BLCS model was able to generate feedback evaluations that approached human-level evaluations. The detailed descriptions of the methods used with the LLMs for generating effective text feedback evaluations for student project reports will be useful to AI computer programmers, researchers, and computer science instructional designers for improving their courses and future research. |
doi_str_mv | 10.1016/j.caeai.2024.100268 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_520470b6816a4f1b90aeeebc62f25214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666920X24000717</els_id><doaj_id>oai_doaj_org_article_520470b6816a4f1b90aeeebc62f25214</doaj_id><sourcerecordid>S2666920X24000717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2098-e6e50131a0daa580269cc6eb270c578f414ef6369829ba083f8c8160b03178733</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhYMoWGp_gZf8gdTZTbLZHDxIUVuoeFHwtkw2k7ohzZbdbcF_77YV8eRlZnjMezy-JLllMGfAxF0_10ho5hx4ERXgQl4kEy6EyGoOH5d_7utk5n0P8adkOavEJHlZohvJezNu0gHdhuIcN3uMx9a2NPg02BT3wWZ0wGGPgdLwSakP-5bGkO6c7UmH1NHOuuBvkqsOB0-znz1N3p8e3xbLbP36vFo8rDPNoZYZCSohFkBoEUsZG9daC2p4BbqsZFewgjqRi1ryukGQeSe1ZAIaiKVllefTZHXObS32aufMFt2XsmjUSbBuo9AFowdSJYeigkZEPxYda2pAImq04B0vOStiVn7O0s5676j7zWOgjoBVr06A1RGwOgOOrvuzKyKigyGnvDY0amqNi0BiD_Ov_xv5_IOt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Harnessing large language models to auto-evaluate the student project reports</title><source>Elsevier ScienceDirect Journals</source><creator>Du, Haoze ; Jia, Qinjin ; Gehringer, Edward ; Wang, Xianfang</creator><creatorcontrib>Du, Haoze ; Jia, Qinjin ; Gehringer, Edward ; Wang, Xianfang</creatorcontrib><description>Addressing the problem of the difficulty in providing timely and reasonable feedback evaluation for student project reports, this paper proposes a method based on LLMs (Large Language Models) that can automatically generate instant feedback evaluations for student project reports. Three LLMs, namely BART (Bidirectional and Auto-Regressive Transformer), CPTB (chatgpt_paraphraser_on_T5_base), and CGP-BLCS (chatgpt-gpt4-prompts-bart-large-cnn-samsum), were designed to generate instant text feedback pre-training models for student project reports. The effectiveness of the feedback was evaluated using ROUGE Metrics, BERT Scores, and human expert evaluations. Experiments showed that the lightweight, fine-tuned BART model, when trained on a larger dataset of 80%, generated effective feedback evaluations for student project reports. When trained on a smaller dataset of 20%, both the BART and CPTB models had unsatisfactory overall performance, while the fine-tuned CGP-BLCS model was able to generate feedback evaluations that approached human-level evaluations. The detailed descriptions of the methods used with the LLMs for generating effective text feedback evaluations for student project reports will be useful to AI computer programmers, researchers, and computer science instructional designers for improving their courses and future research.</description><identifier>ISSN: 2666-920X</identifier><identifier>EISSN: 2666-920X</identifier><identifier>DOI: 10.1016/j.caeai.2024.100268</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Auto-evaluation ; CGP-BLCS ; CPTB ; Large language models ; Student project reports</subject><ispartof>Computers and education. Artificial intelligence, 2024-12, Vol.7, p.100268, Article 100268</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2098-e6e50131a0daa580269cc6eb270c578f414ef6369829ba083f8c8160b03178733</cites><orcidid>0000-0001-8355-1470 ; 0000-0002-5298-9047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666920X24000717$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Du, Haoze</creatorcontrib><creatorcontrib>Jia, Qinjin</creatorcontrib><creatorcontrib>Gehringer, Edward</creatorcontrib><creatorcontrib>Wang, Xianfang</creatorcontrib><title>Harnessing large language models to auto-evaluate the student project reports</title><title>Computers and education. Artificial intelligence</title><description>Addressing the problem of the difficulty in providing timely and reasonable feedback evaluation for student project reports, this paper proposes a method based on LLMs (Large Language Models) that can automatically generate instant feedback evaluations for student project reports. Three LLMs, namely BART (Bidirectional and Auto-Regressive Transformer), CPTB (chatgpt_paraphraser_on_T5_base), and CGP-BLCS (chatgpt-gpt4-prompts-bart-large-cnn-samsum), were designed to generate instant text feedback pre-training models for student project reports. The effectiveness of the feedback was evaluated using ROUGE Metrics, BERT Scores, and human expert evaluations. Experiments showed that the lightweight, fine-tuned BART model, when trained on a larger dataset of 80%, generated effective feedback evaluations for student project reports. When trained on a smaller dataset of 20%, both the BART and CPTB models had unsatisfactory overall performance, while the fine-tuned CGP-BLCS model was able to generate feedback evaluations that approached human-level evaluations. The detailed descriptions of the methods used with the LLMs for generating effective text feedback evaluations for student project reports will be useful to AI computer programmers, researchers, and computer science instructional designers for improving their courses and future research.</description><subject>Auto-evaluation</subject><subject>CGP-BLCS</subject><subject>CPTB</subject><subject>Large language models</subject><subject>Student project reports</subject><issn>2666-920X</issn><issn>2666-920X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kEFLw0AQhYMoWGp_gZf8gdTZTbLZHDxIUVuoeFHwtkw2k7ohzZbdbcF_77YV8eRlZnjMezy-JLllMGfAxF0_10ho5hx4ERXgQl4kEy6EyGoOH5d_7utk5n0P8adkOavEJHlZohvJezNu0gHdhuIcN3uMx9a2NPg02BT3wWZ0wGGPgdLwSakP-5bGkO6c7UmH1NHOuuBvkqsOB0-znz1N3p8e3xbLbP36vFo8rDPNoZYZCSohFkBoEUsZG9daC2p4BbqsZFewgjqRi1ryukGQeSe1ZAIaiKVllefTZHXObS32aufMFt2XsmjUSbBuo9AFowdSJYeigkZEPxYda2pAImq04B0vOStiVn7O0s5676j7zWOgjoBVr06A1RGwOgOOrvuzKyKigyGnvDY0amqNi0BiD_Ov_xv5_IOt</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Du, Haoze</creator><creator>Jia, Qinjin</creator><creator>Gehringer, Edward</creator><creator>Wang, Xianfang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8355-1470</orcidid><orcidid>https://orcid.org/0000-0002-5298-9047</orcidid></search><sort><creationdate>202412</creationdate><title>Harnessing large language models to auto-evaluate the student project reports</title><author>Du, Haoze ; Jia, Qinjin ; Gehringer, Edward ; Wang, Xianfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2098-e6e50131a0daa580269cc6eb270c578f414ef6369829ba083f8c8160b03178733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Auto-evaluation</topic><topic>CGP-BLCS</topic><topic>CPTB</topic><topic>Large language models</topic><topic>Student project reports</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Haoze</creatorcontrib><creatorcontrib>Jia, Qinjin</creatorcontrib><creatorcontrib>Gehringer, Edward</creatorcontrib><creatorcontrib>Wang, Xianfang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Computers and education. Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Haoze</au><au>Jia, Qinjin</au><au>Gehringer, Edward</au><au>Wang, Xianfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing large language models to auto-evaluate the student project reports</atitle><jtitle>Computers and education. Artificial intelligence</jtitle><date>2024-12</date><risdate>2024</risdate><volume>7</volume><spage>100268</spage><pages>100268-</pages><artnum>100268</artnum><issn>2666-920X</issn><eissn>2666-920X</eissn><abstract>Addressing the problem of the difficulty in providing timely and reasonable feedback evaluation for student project reports, this paper proposes a method based on LLMs (Large Language Models) that can automatically generate instant feedback evaluations for student project reports. Three LLMs, namely BART (Bidirectional and Auto-Regressive Transformer), CPTB (chatgpt_paraphraser_on_T5_base), and CGP-BLCS (chatgpt-gpt4-prompts-bart-large-cnn-samsum), were designed to generate instant text feedback pre-training models for student project reports. The effectiveness of the feedback was evaluated using ROUGE Metrics, BERT Scores, and human expert evaluations. Experiments showed that the lightweight, fine-tuned BART model, when trained on a larger dataset of 80%, generated effective feedback evaluations for student project reports. When trained on a smaller dataset of 20%, both the BART and CPTB models had unsatisfactory overall performance, while the fine-tuned CGP-BLCS model was able to generate feedback evaluations that approached human-level evaluations. The detailed descriptions of the methods used with the LLMs for generating effective text feedback evaluations for student project reports will be useful to AI computer programmers, researchers, and computer science instructional designers for improving their courses and future research.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.caeai.2024.100268</doi><orcidid>https://orcid.org/0000-0001-8355-1470</orcidid><orcidid>https://orcid.org/0000-0002-5298-9047</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-920X |
ispartof | Computers and education. Artificial intelligence, 2024-12, Vol.7, p.100268, Article 100268 |
issn | 2666-920X 2666-920X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_520470b6816a4f1b90aeeebc62f25214 |
source | Elsevier ScienceDirect Journals |
subjects | Auto-evaluation CGP-BLCS CPTB Large language models Student project reports |
title | Harnessing large language models to auto-evaluate the student project reports |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20large%20language%20models%20to%20auto-evaluate%20the%20student%20project%20reports&rft.jtitle=Computers%20and%20education.%20Artificial%20intelligence&rft.au=Du,%20Haoze&rft.date=2024-12&rft.volume=7&rft.spage=100268&rft.pages=100268-&rft.artnum=100268&rft.issn=2666-920X&rft.eissn=2666-920X&rft_id=info:doi/10.1016/j.caeai.2024.100268&rft_dat=%3Celsevier_doaj_%3ES2666920X24000717%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2098-e6e50131a0daa580269cc6eb270c578f414ef6369829ba083f8c8160b03178733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |