Loading…

High frequency inductor proximity loss calculation with 3D finite element analysis considering non-sinusoidal current distortion

This paper describes a 3D finite element (FE) based method to calculate the proximity losses for magnetic components in power conversion system. The proximity loss is the main concern of copper loss which causes ac losses in the winding. The FE model is built based on the definitions of the geometri...

Full description

Saved in:
Bibliographic Details
Published in:Energy reports 2021-11, Vol.7, p.267-275
Main Authors: Liu, Chaohui, Chen, Xiao, Xiu, Guidong, Xiong, Liman, Yang, Lianghui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-d65f462672a3214b58b0ddbe7a45f07914fe51651bb79bf60ed779f7c9e6c5693
container_end_page 275
container_issue
container_start_page 267
container_title Energy reports
container_volume 7
creator Liu, Chaohui
Chen, Xiao
Xiu, Guidong
Xiong, Liman
Yang, Lianghui
description This paper describes a 3D finite element (FE) based method to calculate the proximity losses for magnetic components in power conversion system. The proximity loss is the main concern of copper loss which causes ac losses in the winding. The FE model is built based on the definitions of the geometries, meshes, materials, electric circuits, boundary conditions, load conditions, as well as the characteristics of the wire. The total proximity loss is the sum of the power losses of each element calculated with the power loss density function using the obtained nodal flux densities via finite element analysis (FEA) at the given load condition. Owing to a detailed model with all the geometric parameters and thus the flux leakage and end-winding effects can be considered, this FEA approach can predict the flux density more accurately. In addition, non-sinusoidal current is analyzed to calculate the actual power loss in current distortion condition. Experimental tests have been implemented to validate the method. The approach is capable of calculating the energy consumption in power converter for efficiency approvement and energy management.
doi_str_mv 10.1016/j.egyr.2021.08.047
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_522cd94604934716a6a072b073a3e113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352484721006491</els_id><doaj_id>oai_doaj_org_article_522cd94604934716a6a072b073a3e113</doaj_id><sourcerecordid>S2352484721006491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d65f462672a3214b58b0ddbe7a45f07914fe51651bb79bf60ed779f7c9e6c5693</originalsourceid><addsrcrecordid>eNp9kctq3TAQhk1poSHJC3SlF7Crm6VjyCaklwQC3bRrIUujkzn4SKlkt_Wujx45J5SuspphmP-by980HxjtGGXq46GD_Zo7Tjnr6K6jUr9pzrjoeSt3Ur_9L3_fXJZyoJSygVOpxFnz9xb3DyRk-LlAdCvB6Bc3p0wec_qDR5xXMqVSiLOTWyY7Y4rkN84PRHwiASPOQGCCI8SZ2GintWDtTbGgh4xxT2KKbcG4lITeTsQtOW-9HksdstEumnfBTgUuX-J58-PL5-83t-39t693N9f3rROKza1XfZCKK82t4EyO_W6k3o-grewD1QOTAXqmejaOehiDouC1HoJ2AyjXq0GcN3cnrk_2YB4zHm1eTbJongsp742tC7kJTM-584NUVA5CaqasslTzkWphBTAmKoufWC7X32QI_3iMms0SczCbJWazxNCdqZZU0dVJBPXKXwjZFIf15-Axg5vrGvia_Amdfpd3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High frequency inductor proximity loss calculation with 3D finite element analysis considering non-sinusoidal current distortion</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Chaohui ; Chen, Xiao ; Xiu, Guidong ; Xiong, Liman ; Yang, Lianghui</creator><creatorcontrib>Liu, Chaohui ; Chen, Xiao ; Xiu, Guidong ; Xiong, Liman ; Yang, Lianghui</creatorcontrib><description>This paper describes a 3D finite element (FE) based method to calculate the proximity losses for magnetic components in power conversion system. The proximity loss is the main concern of copper loss which causes ac losses in the winding. The FE model is built based on the definitions of the geometries, meshes, materials, electric circuits, boundary conditions, load conditions, as well as the characteristics of the wire. The total proximity loss is the sum of the power losses of each element calculated with the power loss density function using the obtained nodal flux densities via finite element analysis (FEA) at the given load condition. Owing to a detailed model with all the geometric parameters and thus the flux leakage and end-winding effects can be considered, this FEA approach can predict the flux density more accurately. In addition, non-sinusoidal current is analyzed to calculate the actual power loss in current distortion condition. Experimental tests have been implemented to validate the method. The approach is capable of calculating the energy consumption in power converter for efficiency approvement and energy management.</description><identifier>ISSN: 2352-4847</identifier><identifier>EISSN: 2352-4847</identifier><identifier>DOI: 10.1016/j.egyr.2021.08.047</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Efficiency ; Energy ; Finite element analysis ; Flux density ; Power loss ; Proximity loss</subject><ispartof>Energy reports, 2021-11, Vol.7, p.267-275</ispartof><rights>2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-d65f462672a3214b58b0ddbe7a45f07914fe51651bb79bf60ed779f7c9e6c5693</cites><orcidid>0000-0002-4910-4244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352484721006491$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Liu, Chaohui</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xiu, Guidong</creatorcontrib><creatorcontrib>Xiong, Liman</creatorcontrib><creatorcontrib>Yang, Lianghui</creatorcontrib><title>High frequency inductor proximity loss calculation with 3D finite element analysis considering non-sinusoidal current distortion</title><title>Energy reports</title><description>This paper describes a 3D finite element (FE) based method to calculate the proximity losses for magnetic components in power conversion system. The proximity loss is the main concern of copper loss which causes ac losses in the winding. The FE model is built based on the definitions of the geometries, meshes, materials, electric circuits, boundary conditions, load conditions, as well as the characteristics of the wire. The total proximity loss is the sum of the power losses of each element calculated with the power loss density function using the obtained nodal flux densities via finite element analysis (FEA) at the given load condition. Owing to a detailed model with all the geometric parameters and thus the flux leakage and end-winding effects can be considered, this FEA approach can predict the flux density more accurately. In addition, non-sinusoidal current is analyzed to calculate the actual power loss in current distortion condition. Experimental tests have been implemented to validate the method. The approach is capable of calculating the energy consumption in power converter for efficiency approvement and energy management.</description><subject>Efficiency</subject><subject>Energy</subject><subject>Finite element analysis</subject><subject>Flux density</subject><subject>Power loss</subject><subject>Proximity loss</subject><issn>2352-4847</issn><issn>2352-4847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctq3TAQhk1poSHJC3SlF7Crm6VjyCaklwQC3bRrIUujkzn4SKlkt_Wujx45J5SuspphmP-by980HxjtGGXq46GD_Zo7Tjnr6K6jUr9pzrjoeSt3Ur_9L3_fXJZyoJSygVOpxFnz9xb3DyRk-LlAdCvB6Bc3p0wec_qDR5xXMqVSiLOTWyY7Y4rkN84PRHwiASPOQGCCI8SZ2GintWDtTbGgh4xxT2KKbcG4lITeTsQtOW-9HksdstEumnfBTgUuX-J58-PL5-83t-39t693N9f3rROKza1XfZCKK82t4EyO_W6k3o-grewD1QOTAXqmejaOehiDouC1HoJ2AyjXq0GcN3cnrk_2YB4zHm1eTbJongsp742tC7kJTM-584NUVA5CaqasslTzkWphBTAmKoufWC7X32QI_3iMms0SczCbJWazxNCdqZZU0dVJBPXKXwjZFIf15-Axg5vrGvia_Amdfpd3</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Liu, Chaohui</creator><creator>Chen, Xiao</creator><creator>Xiu, Guidong</creator><creator>Xiong, Liman</creator><creator>Yang, Lianghui</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4910-4244</orcidid></search><sort><creationdate>202111</creationdate><title>High frequency inductor proximity loss calculation with 3D finite element analysis considering non-sinusoidal current distortion</title><author>Liu, Chaohui ; Chen, Xiao ; Xiu, Guidong ; Xiong, Liman ; Yang, Lianghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d65f462672a3214b58b0ddbe7a45f07914fe51651bb79bf60ed779f7c9e6c5693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Efficiency</topic><topic>Energy</topic><topic>Finite element analysis</topic><topic>Flux density</topic><topic>Power loss</topic><topic>Proximity loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chaohui</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Xiu, Guidong</creatorcontrib><creatorcontrib>Xiong, Liman</creatorcontrib><creatorcontrib>Yang, Lianghui</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energy reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chaohui</au><au>Chen, Xiao</au><au>Xiu, Guidong</au><au>Xiong, Liman</au><au>Yang, Lianghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High frequency inductor proximity loss calculation with 3D finite element analysis considering non-sinusoidal current distortion</atitle><jtitle>Energy reports</jtitle><date>2021-11</date><risdate>2021</risdate><volume>7</volume><spage>267</spage><epage>275</epage><pages>267-275</pages><issn>2352-4847</issn><eissn>2352-4847</eissn><abstract>This paper describes a 3D finite element (FE) based method to calculate the proximity losses for magnetic components in power conversion system. The proximity loss is the main concern of copper loss which causes ac losses in the winding. The FE model is built based on the definitions of the geometries, meshes, materials, electric circuits, boundary conditions, load conditions, as well as the characteristics of the wire. The total proximity loss is the sum of the power losses of each element calculated with the power loss density function using the obtained nodal flux densities via finite element analysis (FEA) at the given load condition. Owing to a detailed model with all the geometric parameters and thus the flux leakage and end-winding effects can be considered, this FEA approach can predict the flux density more accurately. In addition, non-sinusoidal current is analyzed to calculate the actual power loss in current distortion condition. Experimental tests have been implemented to validate the method. The approach is capable of calculating the energy consumption in power converter for efficiency approvement and energy management.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.egyr.2021.08.047</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4910-4244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-4847
ispartof Energy reports, 2021-11, Vol.7, p.267-275
issn 2352-4847
2352-4847
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_522cd94604934716a6a072b073a3e113
source Elsevier ScienceDirect Journals
subjects Efficiency
Energy
Finite element analysis
Flux density
Power loss
Proximity loss
title High frequency inductor proximity loss calculation with 3D finite element analysis considering non-sinusoidal current distortion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20frequency%20inductor%20proximity%20loss%20calculation%20with%203D%20finite%20element%20analysis%20considering%20non-sinusoidal%20current%20distortion&rft.jtitle=Energy%20reports&rft.au=Liu,%20Chaohui&rft.date=2021-11&rft.volume=7&rft.spage=267&rft.epage=275&rft.pages=267-275&rft.issn=2352-4847&rft.eissn=2352-4847&rft_id=info:doi/10.1016/j.egyr.2021.08.047&rft_dat=%3Celsevier_doaj_%3ES2352484721006491%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-d65f462672a3214b58b0ddbe7a45f07914fe51651bb79bf60ed779f7c9e6c5693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true