Loading…
The comprehensive on-demand 3D bio-printing for composite reconstruction of mandibular defects
Background The mandible is a functional bio-organ that supports facial structures and helps mastication and speaking. Large mandible defects, generally greater than 6-cm segment loss, may require composite tissue reconstruction such as osteocutaneous-vascularized free flap which has a limitation of...
Saved in:
Published in: | Maxillofacial plastic and reconstructive surgery 2022-10, Vol.44 (1), p.31-31, Article 31 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
The mandible is a functional bio-organ that supports facial structures and helps mastication and speaking. Large mandible defects, generally greater than 6-cm segment loss, may require composite tissue reconstruction such as osteocutaneous-vascularized free flap which has a limitation of additional surgery and a functional morbidity at the donor site. A 3D bio-printing technology is recently developed to overcome the limitation in the composite reconstruction of the mandible using osteocutaneous-vascularized free flap.
Review
Scaffold, cells, and bioactive molecules are essential for a 3D bio-printing. For mandibular reconstruction, materials in a 3D bio-printing require mechanical strength, resilience, and biocompatibility. Recently, an integrated tissue and organ printing system with multiple cartridges are designed and it is capable of printing polymers to reinforce the printed structure, such as hydrogel.
Conclusion
For successful composite tissue reconstruction of the mandible, biologic considerations and components should be presented with a comprehensive on-demand online platform model of customized approaches. |
---|---|
ISSN: | 2288-8586 2288-8101 2288-8586 |
DOI: | 10.1186/s40902-022-00361-7 |