Loading…
Adaptively optimal energy management for integrated hydrogen energy systems
Integrated hydrogen energy systems (IHESs) have become attractive alternatives to cope with the depletion of fossil fuels and increasingly severe climate change problems. This paper proposes an adaptively optimal energy scheduling method based on deep deterministic policy gradient (DDPG) to improve...
Saved in:
Published in: | IET generation, transmission & distribution transmission & distribution, 2023-11, Vol.17 (21), p.4750-4762 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3 |
container_end_page | 4762 |
container_issue | 21 |
container_start_page | 4750 |
container_title | IET generation, transmission & distribution |
container_volume | 17 |
creator | Li, Hengyi Qin, Boyu Zhao, Yuhang Li, Fan Wu, Xiaoman Ding, Tao |
description | Integrated hydrogen energy systems (IHESs) have become attractive alternatives to cope with the depletion of fossil fuels and increasingly severe climate change problems. This paper proposes an adaptively optimal energy scheduling method based on deep deterministic policy gradient (DDPG) to improve the operational efficiency of IHES. The optimal scheduling problem is formulated as a Markov decision process problem with action space, environmental states, and action‐value function. The DDPG‐based optimal energy management algorithm with actor‐critic structure is proposed based on policy gradients and neural networks. Through actor‐critic network training and policy iteration, the energy management scheme can be adaptively optimized according to the dynamic responses of IHES. The benefits of the proposed algorithm are analysed through time‐domain simulations, and the scheduling robustness under different uncertain conditions is verified. |
doi_str_mv | 10.1049/gtd2.12978 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_523733315ab84cafa224903ade500618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_523733315ab84cafa224903ade500618</doaj_id><sourcerecordid>oai_doaj_org_article_523733315ab84cafa224903ade500618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFYv_oKcheh-JptjKX4UC170vEx2Z2NKPsruIuTfm7ba07wML88MDyH3jD4yKqunJjn-yHhV6guyYKViuS4qdXnOurwmNzHuKFWqkOWCvK8c7FP7g92UjXPooctwwNBMWQ8DNNjjkDI_hqwdEjYBErrse3JhbHD4b8YpJuzjLbny0EW8-5tL8vXy_Ll-y7cfr5v1aptbIUTKGTjnha5KVN5yKYVjwgJw6zlnzpe1pkWNyJilXNQ1gpSVLoRmtAY3t8WSbE5cN8LO7MP8dJjMCK05LsbQGAiptR0axUU5H2UKai0teOBcVlSAQ0VpwfTMejixbBhjDOjPPEbNQak5KDVHpeIXvlZqqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptively optimal energy management for integrated hydrogen energy systems</title><source>Wiley-Blackwell Titles (Open access)</source><source>IET Digital Library Journals Archive 1872-2012</source><creator>Li, Hengyi ; Qin, Boyu ; Zhao, Yuhang ; Li, Fan ; Wu, Xiaoman ; Ding, Tao</creator><creatorcontrib>Li, Hengyi ; Qin, Boyu ; Zhao, Yuhang ; Li, Fan ; Wu, Xiaoman ; Ding, Tao</creatorcontrib><description>Integrated hydrogen energy systems (IHESs) have become attractive alternatives to cope with the depletion of fossil fuels and increasingly severe climate change problems. This paper proposes an adaptively optimal energy scheduling method based on deep deterministic policy gradient (DDPG) to improve the operational efficiency of IHES. The optimal scheduling problem is formulated as a Markov decision process problem with action space, environmental states, and action‐value function. The DDPG‐based optimal energy management algorithm with actor‐critic structure is proposed based on policy gradients and neural networks. Through actor‐critic network training and policy iteration, the energy management scheme can be adaptively optimized according to the dynamic responses of IHES. The benefits of the proposed algorithm are analysed through time‐domain simulations, and the scheduling robustness under different uncertain conditions is verified.</description><identifier>ISSN: 1751-8687</identifier><identifier>EISSN: 1751-8695</identifier><identifier>DOI: 10.1049/gtd2.12978</identifier><language>eng</language><publisher>Wiley</publisher><subject>hydrogen storage ; optimisation ; renewables and storage</subject><ispartof>IET generation, transmission & distribution, 2023-11, Vol.17 (21), p.4750-4762</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3</citedby><cites>FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3</cites><orcidid>0000-0002-9125-9960 ; 0000-0002-2612-7881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Hengyi</creatorcontrib><creatorcontrib>Qin, Boyu</creatorcontrib><creatorcontrib>Zhao, Yuhang</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Wu, Xiaoman</creatorcontrib><creatorcontrib>Ding, Tao</creatorcontrib><title>Adaptively optimal energy management for integrated hydrogen energy systems</title><title>IET generation, transmission & distribution</title><description>Integrated hydrogen energy systems (IHESs) have become attractive alternatives to cope with the depletion of fossil fuels and increasingly severe climate change problems. This paper proposes an adaptively optimal energy scheduling method based on deep deterministic policy gradient (DDPG) to improve the operational efficiency of IHES. The optimal scheduling problem is formulated as a Markov decision process problem with action space, environmental states, and action‐value function. The DDPG‐based optimal energy management algorithm with actor‐critic structure is proposed based on policy gradients and neural networks. Through actor‐critic network training and policy iteration, the energy management scheme can be adaptively optimized according to the dynamic responses of IHES. The benefits of the proposed algorithm are analysed through time‐domain simulations, and the scheduling robustness under different uncertain conditions is verified.</description><subject>hydrogen storage</subject><subject>optimisation</subject><subject>renewables and storage</subject><issn>1751-8687</issn><issn>1751-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kE1Lw0AQhhdRsFYv_oKcheh-JptjKX4UC170vEx2Z2NKPsruIuTfm7ba07wML88MDyH3jD4yKqunJjn-yHhV6guyYKViuS4qdXnOurwmNzHuKFWqkOWCvK8c7FP7g92UjXPooctwwNBMWQ8DNNjjkDI_hqwdEjYBErrse3JhbHD4b8YpJuzjLbny0EW8-5tL8vXy_Ll-y7cfr5v1aptbIUTKGTjnha5KVN5yKYVjwgJw6zlnzpe1pkWNyJilXNQ1gpSVLoRmtAY3t8WSbE5cN8LO7MP8dJjMCK05LsbQGAiptR0axUU5H2UKai0teOBcVlSAQ0VpwfTMejixbBhjDOjPPEbNQak5KDVHpeIXvlZqqA</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Li, Hengyi</creator><creator>Qin, Boyu</creator><creator>Zhao, Yuhang</creator><creator>Li, Fan</creator><creator>Wu, Xiaoman</creator><creator>Ding, Tao</creator><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9125-9960</orcidid><orcidid>https://orcid.org/0000-0002-2612-7881</orcidid></search><sort><creationdate>202311</creationdate><title>Adaptively optimal energy management for integrated hydrogen energy systems</title><author>Li, Hengyi ; Qin, Boyu ; Zhao, Yuhang ; Li, Fan ; Wu, Xiaoman ; Ding, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>hydrogen storage</topic><topic>optimisation</topic><topic>renewables and storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hengyi</creatorcontrib><creatorcontrib>Qin, Boyu</creatorcontrib><creatorcontrib>Zhao, Yuhang</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Wu, Xiaoman</creatorcontrib><creatorcontrib>Ding, Tao</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>IET generation, transmission & distribution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hengyi</au><au>Qin, Boyu</au><au>Zhao, Yuhang</au><au>Li, Fan</au><au>Wu, Xiaoman</au><au>Ding, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptively optimal energy management for integrated hydrogen energy systems</atitle><jtitle>IET generation, transmission & distribution</jtitle><date>2023-11</date><risdate>2023</risdate><volume>17</volume><issue>21</issue><spage>4750</spage><epage>4762</epage><pages>4750-4762</pages><issn>1751-8687</issn><eissn>1751-8695</eissn><abstract>Integrated hydrogen energy systems (IHESs) have become attractive alternatives to cope with the depletion of fossil fuels and increasingly severe climate change problems. This paper proposes an adaptively optimal energy scheduling method based on deep deterministic policy gradient (DDPG) to improve the operational efficiency of IHES. The optimal scheduling problem is formulated as a Markov decision process problem with action space, environmental states, and action‐value function. The DDPG‐based optimal energy management algorithm with actor‐critic structure is proposed based on policy gradients and neural networks. Through actor‐critic network training and policy iteration, the energy management scheme can be adaptively optimized according to the dynamic responses of IHES. The benefits of the proposed algorithm are analysed through time‐domain simulations, and the scheduling robustness under different uncertain conditions is verified.</abstract><pub>Wiley</pub><doi>10.1049/gtd2.12978</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9125-9960</orcidid><orcidid>https://orcid.org/0000-0002-2612-7881</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8687 |
ispartof | IET generation, transmission & distribution, 2023-11, Vol.17 (21), p.4750-4762 |
issn | 1751-8687 1751-8695 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_523733315ab84cafa224903ade500618 |
source | Wiley-Blackwell Titles (Open access); IET Digital Library Journals Archive 1872-2012 |
subjects | hydrogen storage optimisation renewables and storage |
title | Adaptively optimal energy management for integrated hydrogen energy systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptively%20optimal%20energy%20management%20for%20integrated%20hydrogen%20energy%20systems&rft.jtitle=IET%20generation,%20transmission%20&%20distribution&rft.au=Li,%20Hengyi&rft.date=2023-11&rft.volume=17&rft.issue=21&rft.spage=4750&rft.epage=4762&rft.pages=4750-4762&rft.issn=1751-8687&rft.eissn=1751-8695&rft_id=info:doi/10.1049/gtd2.12978&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_523733315ab84cafa224903ade500618%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |