Loading…

Adaptively optimal energy management for integrated hydrogen energy systems

Integrated hydrogen energy systems (IHESs) have become attractive alternatives to cope with the depletion of fossil fuels and increasingly severe climate change problems. This paper proposes an adaptively optimal energy scheduling method based on deep deterministic policy gradient (DDPG) to improve...

Full description

Saved in:
Bibliographic Details
Published in:IET generation, transmission & distribution transmission & distribution, 2023-11, Vol.17 (21), p.4750-4762
Main Authors: Li, Hengyi, Qin, Boyu, Zhao, Yuhang, Li, Fan, Wu, Xiaoman, Ding, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3
cites cdi_FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3
container_end_page 4762
container_issue 21
container_start_page 4750
container_title IET generation, transmission & distribution
container_volume 17
creator Li, Hengyi
Qin, Boyu
Zhao, Yuhang
Li, Fan
Wu, Xiaoman
Ding, Tao
description Integrated hydrogen energy systems (IHESs) have become attractive alternatives to cope with the depletion of fossil fuels and increasingly severe climate change problems. This paper proposes an adaptively optimal energy scheduling method based on deep deterministic policy gradient (DDPG) to improve the operational efficiency of IHES. The optimal scheduling problem is formulated as a Markov decision process problem with action space, environmental states, and action‐value function. The DDPG‐based optimal energy management algorithm with actor‐critic structure is proposed based on policy gradients and neural networks. Through actor‐critic network training and policy iteration, the energy management scheme can be adaptively optimized according to the dynamic responses of IHES. The benefits of the proposed algorithm are analysed through time‐domain simulations, and the scheduling robustness under different uncertain conditions is verified.
doi_str_mv 10.1049/gtd2.12978
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_523733315ab84cafa224903ade500618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_523733315ab84cafa224903ade500618</doaj_id><sourcerecordid>oai_doaj_org_article_523733315ab84cafa224903ade500618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFYv_oKcheh-JptjKX4UC170vEx2Z2NKPsruIuTfm7ba07wML88MDyH3jD4yKqunJjn-yHhV6guyYKViuS4qdXnOurwmNzHuKFWqkOWCvK8c7FP7g92UjXPooctwwNBMWQ8DNNjjkDI_hqwdEjYBErrse3JhbHD4b8YpJuzjLbny0EW8-5tL8vXy_Ll-y7cfr5v1aptbIUTKGTjnha5KVN5yKYVjwgJw6zlnzpe1pkWNyJilXNQ1gpSVLoRmtAY3t8WSbE5cN8LO7MP8dJjMCK05LsbQGAiptR0axUU5H2UKai0teOBcVlSAQ0VpwfTMejixbBhjDOjPPEbNQak5KDVHpeIXvlZqqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptively optimal energy management for integrated hydrogen energy systems</title><source>Wiley-Blackwell Titles (Open access)</source><source>IET Digital Library Journals Archive 1872-2012</source><creator>Li, Hengyi ; Qin, Boyu ; Zhao, Yuhang ; Li, Fan ; Wu, Xiaoman ; Ding, Tao</creator><creatorcontrib>Li, Hengyi ; Qin, Boyu ; Zhao, Yuhang ; Li, Fan ; Wu, Xiaoman ; Ding, Tao</creatorcontrib><description>Integrated hydrogen energy systems (IHESs) have become attractive alternatives to cope with the depletion of fossil fuels and increasingly severe climate change problems. This paper proposes an adaptively optimal energy scheduling method based on deep deterministic policy gradient (DDPG) to improve the operational efficiency of IHES. The optimal scheduling problem is formulated as a Markov decision process problem with action space, environmental states, and action‐value function. The DDPG‐based optimal energy management algorithm with actor‐critic structure is proposed based on policy gradients and neural networks. Through actor‐critic network training and policy iteration, the energy management scheme can be adaptively optimized according to the dynamic responses of IHES. The benefits of the proposed algorithm are analysed through time‐domain simulations, and the scheduling robustness under different uncertain conditions is verified.</description><identifier>ISSN: 1751-8687</identifier><identifier>EISSN: 1751-8695</identifier><identifier>DOI: 10.1049/gtd2.12978</identifier><language>eng</language><publisher>Wiley</publisher><subject>hydrogen storage ; optimisation ; renewables and storage</subject><ispartof>IET generation, transmission &amp; distribution, 2023-11, Vol.17 (21), p.4750-4762</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3</citedby><cites>FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3</cites><orcidid>0000-0002-9125-9960 ; 0000-0002-2612-7881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Hengyi</creatorcontrib><creatorcontrib>Qin, Boyu</creatorcontrib><creatorcontrib>Zhao, Yuhang</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Wu, Xiaoman</creatorcontrib><creatorcontrib>Ding, Tao</creatorcontrib><title>Adaptively optimal energy management for integrated hydrogen energy systems</title><title>IET generation, transmission &amp; distribution</title><description>Integrated hydrogen energy systems (IHESs) have become attractive alternatives to cope with the depletion of fossil fuels and increasingly severe climate change problems. This paper proposes an adaptively optimal energy scheduling method based on deep deterministic policy gradient (DDPG) to improve the operational efficiency of IHES. The optimal scheduling problem is formulated as a Markov decision process problem with action space, environmental states, and action‐value function. The DDPG‐based optimal energy management algorithm with actor‐critic structure is proposed based on policy gradients and neural networks. Through actor‐critic network training and policy iteration, the energy management scheme can be adaptively optimized according to the dynamic responses of IHES. The benefits of the proposed algorithm are analysed through time‐domain simulations, and the scheduling robustness under different uncertain conditions is verified.</description><subject>hydrogen storage</subject><subject>optimisation</subject><subject>renewables and storage</subject><issn>1751-8687</issn><issn>1751-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kE1Lw0AQhhdRsFYv_oKcheh-JptjKX4UC170vEx2Z2NKPsruIuTfm7ba07wML88MDyH3jD4yKqunJjn-yHhV6guyYKViuS4qdXnOurwmNzHuKFWqkOWCvK8c7FP7g92UjXPooctwwNBMWQ8DNNjjkDI_hqwdEjYBErrse3JhbHD4b8YpJuzjLbny0EW8-5tL8vXy_Ll-y7cfr5v1aptbIUTKGTjnha5KVN5yKYVjwgJw6zlnzpe1pkWNyJilXNQ1gpSVLoRmtAY3t8WSbE5cN8LO7MP8dJjMCK05LsbQGAiptR0axUU5H2UKai0teOBcVlSAQ0VpwfTMejixbBhjDOjPPEbNQak5KDVHpeIXvlZqqA</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Li, Hengyi</creator><creator>Qin, Boyu</creator><creator>Zhao, Yuhang</creator><creator>Li, Fan</creator><creator>Wu, Xiaoman</creator><creator>Ding, Tao</creator><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9125-9960</orcidid><orcidid>https://orcid.org/0000-0002-2612-7881</orcidid></search><sort><creationdate>202311</creationdate><title>Adaptively optimal energy management for integrated hydrogen energy systems</title><author>Li, Hengyi ; Qin, Boyu ; Zhao, Yuhang ; Li, Fan ; Wu, Xiaoman ; Ding, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>hydrogen storage</topic><topic>optimisation</topic><topic>renewables and storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hengyi</creatorcontrib><creatorcontrib>Qin, Boyu</creatorcontrib><creatorcontrib>Zhao, Yuhang</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Wu, Xiaoman</creatorcontrib><creatorcontrib>Ding, Tao</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>IET generation, transmission &amp; distribution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hengyi</au><au>Qin, Boyu</au><au>Zhao, Yuhang</au><au>Li, Fan</au><au>Wu, Xiaoman</au><au>Ding, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptively optimal energy management for integrated hydrogen energy systems</atitle><jtitle>IET generation, transmission &amp; distribution</jtitle><date>2023-11</date><risdate>2023</risdate><volume>17</volume><issue>21</issue><spage>4750</spage><epage>4762</epage><pages>4750-4762</pages><issn>1751-8687</issn><eissn>1751-8695</eissn><abstract>Integrated hydrogen energy systems (IHESs) have become attractive alternatives to cope with the depletion of fossil fuels and increasingly severe climate change problems. This paper proposes an adaptively optimal energy scheduling method based on deep deterministic policy gradient (DDPG) to improve the operational efficiency of IHES. The optimal scheduling problem is formulated as a Markov decision process problem with action space, environmental states, and action‐value function. The DDPG‐based optimal energy management algorithm with actor‐critic structure is proposed based on policy gradients and neural networks. Through actor‐critic network training and policy iteration, the energy management scheme can be adaptively optimized according to the dynamic responses of IHES. The benefits of the proposed algorithm are analysed through time‐domain simulations, and the scheduling robustness under different uncertain conditions is verified.</abstract><pub>Wiley</pub><doi>10.1049/gtd2.12978</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9125-9960</orcidid><orcidid>https://orcid.org/0000-0002-2612-7881</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8687
ispartof IET generation, transmission & distribution, 2023-11, Vol.17 (21), p.4750-4762
issn 1751-8687
1751-8695
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_523733315ab84cafa224903ade500618
source Wiley-Blackwell Titles (Open access); IET Digital Library Journals Archive 1872-2012
subjects hydrogen storage
optimisation
renewables and storage
title Adaptively optimal energy management for integrated hydrogen energy systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptively%20optimal%20energy%20management%20for%20integrated%20hydrogen%20energy%20systems&rft.jtitle=IET%20generation,%20transmission%20&%20distribution&rft.au=Li,%20Hengyi&rft.date=2023-11&rft.volume=17&rft.issue=21&rft.spage=4750&rft.epage=4762&rft.pages=4750-4762&rft.issn=1751-8687&rft.eissn=1751-8695&rft_id=info:doi/10.1049/gtd2.12978&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_523733315ab84cafa224903ade500618%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-1addf3897e5fc2443d13caa2cf221df7b806bee11c023bbea449863810bad43d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true