Loading…

Physical properties of iodate solutions and the deliquescence of crystalline I2O5 and HIO3

Secondary aerosol produced from marine biogenic sources in algal-rich coastal locations will initially be composed of iodine oxide species, most likely I2 O5 , or its hydrated form HIO3 , formed as a result of iodine gas-phase chemistry. At present, there is no quantitative hygroscopic data for thes...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2010-01, Vol.10 (24), p.12251-12260
Main Authors: Kumar, R, Saunder s, R W, Mahajan, A S, Plane, J M.C, Murray, B J
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Secondary aerosol produced from marine biogenic sources in algal-rich coastal locations will initially be composed of iodine oxide species, most likely I2 O5 , or its hydrated form HIO3 , formed as a result of iodine gas-phase chemistry. At present, there is no quantitative hygroscopic data for these compounds and very little data available for iodate solutions (HIO3 and I2 O5 share a common aqueous phase). With increased interest in the role of such aerosol in the marine atmosphere, we have conducted studies of (i) the deliquescence behaviour of crystalline HIO3 and I2 O5 at 273-303 K, (ii) the efflorescence behaviour of aqueous iodate solution droplets, and (iii) properties (water activity, density, and viscosity) of subsaturated and saturated iodate solutions. The deliquescence of I2 O5 crystals at 293 K was observed to occur at a relative humidity (DRH) of 80.8±1.0%, whereas for HIO3 , a DRH of 85.0±1.0% was measured. These values are consistent with measured water activity values for saturated I2 O5 and HIO3 solutions at 293 K of 0.80±0.01 and 0.84±0.01 respectively. At all temperatures, DRH values for HIO3 crystals were observed to be higher than for those of I2 O5 . The temperature-dependent DRH data, along with solubility and water activity data were used to evaluate the enthalpy of solution (δHsol ) for HIO3 and I2 O5 . A δHsol value of 8.3±0.7 kJ mol-1 was determined for HIO3 which is consistent with a literature value of 8.8 kJ mol-1 . For I2 O5 , we report for the first time its solubility at various temperatures and δHsol = 12.4±0.6 kJ mol-1 . The measured water activity values confirm that aqueous iodate solutions are strongly non-ideal, consistent with previous reports of complex ion formation and molecular aggregation.
ISSN:1680-7316
1680-7324
DOI:10.5194/acp-10-12251-2010