Loading…

Energy storage, sensors, photocatalytic applications of green synthesized ZnO: Fe3+ nanomaterials

ZnO nanomaterials doped with Fe3+ ions at concentrations ranging from 1 % to 7 % were synthesized using an environmentally friendly combustion technique. These materials were then analyzed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and U...

Full description

Saved in:
Bibliographic Details
Published in:Chemical physics impact 2023-12, Vol.7, p.100387, Article 100387
Main Authors: Naik, Ramachandra, Kumar, A Naveen, Shanbhag, Vijaya, Nagaswarupa, H.P., Boddula, Rajender, Al-Kahtani, Abdullah A., Kumar, Kulurumotlakatla Dasha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c290t-81db20b473d0791dcf56e35858797cca8fab7a5a682544bc1bf7a4cc3303712f3
cites cdi_FETCH-LOGICAL-c290t-81db20b473d0791dcf56e35858797cca8fab7a5a682544bc1bf7a4cc3303712f3
container_end_page
container_issue
container_start_page 100387
container_title Chemical physics impact
container_volume 7
creator Naik, Ramachandra
Kumar, A Naveen
Shanbhag, Vijaya
Nagaswarupa, H.P.
Boddula, Rajender
Al-Kahtani, Abdullah A.
Kumar, Kulurumotlakatla Dasha
description ZnO nanomaterials doped with Fe3+ ions at concentrations ranging from 1 % to 7 % were synthesized using an environmentally friendly combustion technique. These materials were then analyzed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV–Visible diffuse reflectance spectroscopy (UV–Visible DRS). The resulting crystallite size was determined to be between 20 nm and 25 nm. By applying the Kubelka-Munk function, the band gap was calculated and found to vary from 2.55 eV to 2.99 eV. For the investigation of electrochemical properties, modified carbon paste electrodes containing ZnO: Fe3+ (1–7 mol%) were subjected to cyclic voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). Notably, the ZnO: Fe3+ (1 mol%) electrode demonstrated promising characteristics for supercapacitor applications. This same electrode was also utilized for detecting paracetamol and glucose at concentrations ranging from 1 mM to 5 mM using CV and chronoamperometry techniques, underscoring its potential as an electrochemical sensor. Moreover, the photocatalytic capability of ZnO: Fe3+ (1 mol%) nanomaterial was assessed through the degradation of Methylene Blue and Acid Orange-8 dyes. The results were impressive, with this particular photocatalyst achieving 94.45 % degradation of Methylene Blue and 96.29% degradation of acid orange-8 dye. These outcomes validate its efficacy for applications in photocatalytic dye degradation. In conclusion, the ZnO: Fe3+ (1 mol%) nanomaterial synthesized via environmentally friendly means exhibits substantial promise for diverse applications in electrochemical and photocatalytic domains.
doi_str_mv 10.1016/j.chphi.2023.100387
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_52a15ae820b044cb8099121017c21818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_52a15ae820b044cb8099121017c21818</doaj_id><sourcerecordid>oai_doaj_org_article_52a15ae820b044cb8099121017c21818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-81db20b473d0791dcf56e35858797cca8fab7a5a682544bc1bf7a4cc3303712f3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhiMEElXpL2DxTlP8GTtsqGqhUqUusLBYF8dJHKVxZGcpv560RYjpvXuH53RPkjwSvCKYZM_tyjRD41YUUzY1mCl5k8xolskUU8pv_833ySLGFmNMBWFE8lkCm96G-oTi6APUdomi7aMPcYmGxo_ewAjdaXQGwTB0blqd7yPyFaqDtT2Kp35sbHTftkRf_eEFbS17Qj30_gijDQ66-JDcVVPYxW_Ok8_t5mP9nu4Pb7v16z41NMdjqkhZUFxwyUosc1KaSmSWCSWUzKUxoCooJAjIFBWcF4YUlQRuDGOYSUIrNk92V27podVDcEcIJ-3B6UvhQ60hTJ90VgsKRIBV0z3MuSkUznNCJ5nSUKKImljsyjLBxxhs9ccjWJ-l61ZfpOuzdH2Vzn4AzRF2cg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energy storage, sensors, photocatalytic applications of green synthesized ZnO: Fe3+ nanomaterials</title><source>ScienceDirect Additional Titles</source><creator>Naik, Ramachandra ; Kumar, A Naveen ; Shanbhag, Vijaya ; Nagaswarupa, H.P. ; Boddula, Rajender ; Al-Kahtani, Abdullah A. ; Kumar, Kulurumotlakatla Dasha</creator><creatorcontrib>Naik, Ramachandra ; Kumar, A Naveen ; Shanbhag, Vijaya ; Nagaswarupa, H.P. ; Boddula, Rajender ; Al-Kahtani, Abdullah A. ; Kumar, Kulurumotlakatla Dasha</creatorcontrib><description>ZnO nanomaterials doped with Fe3+ ions at concentrations ranging from 1 % to 7 % were synthesized using an environmentally friendly combustion technique. These materials were then analyzed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV–Visible diffuse reflectance spectroscopy (UV–Visible DRS). The resulting crystallite size was determined to be between 20 nm and 25 nm. By applying the Kubelka-Munk function, the band gap was calculated and found to vary from 2.55 eV to 2.99 eV. For the investigation of electrochemical properties, modified carbon paste electrodes containing ZnO: Fe3+ (1–7 mol%) were subjected to cyclic voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). Notably, the ZnO: Fe3+ (1 mol%) electrode demonstrated promising characteristics for supercapacitor applications. This same electrode was also utilized for detecting paracetamol and glucose at concentrations ranging from 1 mM to 5 mM using CV and chronoamperometry techniques, underscoring its potential as an electrochemical sensor. Moreover, the photocatalytic capability of ZnO: Fe3+ (1 mol%) nanomaterial was assessed through the degradation of Methylene Blue and Acid Orange-8 dyes. The results were impressive, with this particular photocatalyst achieving 94.45 % degradation of Methylene Blue and 96.29% degradation of acid orange-8 dye. These outcomes validate its efficacy for applications in photocatalytic dye degradation. In conclusion, the ZnO: Fe3+ (1 mol%) nanomaterial synthesized via environmentally friendly means exhibits substantial promise for diverse applications in electrochemical and photocatalytic domains.</description><identifier>ISSN: 2667-0224</identifier><identifier>EISSN: 2667-0224</identifier><identifier>DOI: 10.1016/j.chphi.2023.100387</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Chronoamperometry ; Cyclic voltammetry ; Methylene blue ; Multifunctional applications ; Photocatalytic degradation ; ZnO</subject><ispartof>Chemical physics impact, 2023-12, Vol.7, p.100387, Article 100387</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-81db20b473d0791dcf56e35858797cca8fab7a5a682544bc1bf7a4cc3303712f3</citedby><cites>FETCH-LOGICAL-c290t-81db20b473d0791dcf56e35858797cca8fab7a5a682544bc1bf7a4cc3303712f3</cites><orcidid>0000-0003-1958-9524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Naik, Ramachandra</creatorcontrib><creatorcontrib>Kumar, A Naveen</creatorcontrib><creatorcontrib>Shanbhag, Vijaya</creatorcontrib><creatorcontrib>Nagaswarupa, H.P.</creatorcontrib><creatorcontrib>Boddula, Rajender</creatorcontrib><creatorcontrib>Al-Kahtani, Abdullah A.</creatorcontrib><creatorcontrib>Kumar, Kulurumotlakatla Dasha</creatorcontrib><title>Energy storage, sensors, photocatalytic applications of green synthesized ZnO: Fe3+ nanomaterials</title><title>Chemical physics impact</title><description>ZnO nanomaterials doped with Fe3+ ions at concentrations ranging from 1 % to 7 % were synthesized using an environmentally friendly combustion technique. These materials were then analyzed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV–Visible diffuse reflectance spectroscopy (UV–Visible DRS). The resulting crystallite size was determined to be between 20 nm and 25 nm. By applying the Kubelka-Munk function, the band gap was calculated and found to vary from 2.55 eV to 2.99 eV. For the investigation of electrochemical properties, modified carbon paste electrodes containing ZnO: Fe3+ (1–7 mol%) were subjected to cyclic voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). Notably, the ZnO: Fe3+ (1 mol%) electrode demonstrated promising characteristics for supercapacitor applications. This same electrode was also utilized for detecting paracetamol and glucose at concentrations ranging from 1 mM to 5 mM using CV and chronoamperometry techniques, underscoring its potential as an electrochemical sensor. Moreover, the photocatalytic capability of ZnO: Fe3+ (1 mol%) nanomaterial was assessed through the degradation of Methylene Blue and Acid Orange-8 dyes. The results were impressive, with this particular photocatalyst achieving 94.45 % degradation of Methylene Blue and 96.29% degradation of acid orange-8 dye. These outcomes validate its efficacy for applications in photocatalytic dye degradation. In conclusion, the ZnO: Fe3+ (1 mol%) nanomaterial synthesized via environmentally friendly means exhibits substantial promise for diverse applications in electrochemical and photocatalytic domains.</description><subject>Chronoamperometry</subject><subject>Cyclic voltammetry</subject><subject>Methylene blue</subject><subject>Multifunctional applications</subject><subject>Photocatalytic degradation</subject><subject>ZnO</subject><issn>2667-0224</issn><issn>2667-0224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkD1PwzAQhiMEElXpL2DxTlP8GTtsqGqhUqUusLBYF8dJHKVxZGcpv560RYjpvXuH53RPkjwSvCKYZM_tyjRD41YUUzY1mCl5k8xolskUU8pv_833ySLGFmNMBWFE8lkCm96G-oTi6APUdomi7aMPcYmGxo_ewAjdaXQGwTB0blqd7yPyFaqDtT2Kp35sbHTftkRf_eEFbS17Qj30_gijDQ66-JDcVVPYxW_Ok8_t5mP9nu4Pb7v16z41NMdjqkhZUFxwyUosc1KaSmSWCSWUzKUxoCooJAjIFBWcF4YUlQRuDGOYSUIrNk92V27podVDcEcIJ-3B6UvhQ60hTJ90VgsKRIBV0z3MuSkUznNCJ5nSUKKImljsyjLBxxhs9ccjWJ-l61ZfpOuzdH2Vzn4AzRF2cg</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Naik, Ramachandra</creator><creator>Kumar, A Naveen</creator><creator>Shanbhag, Vijaya</creator><creator>Nagaswarupa, H.P.</creator><creator>Boddula, Rajender</creator><creator>Al-Kahtani, Abdullah A.</creator><creator>Kumar, Kulurumotlakatla Dasha</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1958-9524</orcidid></search><sort><creationdate>202312</creationdate><title>Energy storage, sensors, photocatalytic applications of green synthesized ZnO: Fe3+ nanomaterials</title><author>Naik, Ramachandra ; Kumar, A Naveen ; Shanbhag, Vijaya ; Nagaswarupa, H.P. ; Boddula, Rajender ; Al-Kahtani, Abdullah A. ; Kumar, Kulurumotlakatla Dasha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-81db20b473d0791dcf56e35858797cca8fab7a5a682544bc1bf7a4cc3303712f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chronoamperometry</topic><topic>Cyclic voltammetry</topic><topic>Methylene blue</topic><topic>Multifunctional applications</topic><topic>Photocatalytic degradation</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naik, Ramachandra</creatorcontrib><creatorcontrib>Kumar, A Naveen</creatorcontrib><creatorcontrib>Shanbhag, Vijaya</creatorcontrib><creatorcontrib>Nagaswarupa, H.P.</creatorcontrib><creatorcontrib>Boddula, Rajender</creatorcontrib><creatorcontrib>Al-Kahtani, Abdullah A.</creatorcontrib><creatorcontrib>Kumar, Kulurumotlakatla Dasha</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Chemical physics impact</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naik, Ramachandra</au><au>Kumar, A Naveen</au><au>Shanbhag, Vijaya</au><au>Nagaswarupa, H.P.</au><au>Boddula, Rajender</au><au>Al-Kahtani, Abdullah A.</au><au>Kumar, Kulurumotlakatla Dasha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy storage, sensors, photocatalytic applications of green synthesized ZnO: Fe3+ nanomaterials</atitle><jtitle>Chemical physics impact</jtitle><date>2023-12</date><risdate>2023</risdate><volume>7</volume><spage>100387</spage><pages>100387-</pages><artnum>100387</artnum><issn>2667-0224</issn><eissn>2667-0224</eissn><abstract>ZnO nanomaterials doped with Fe3+ ions at concentrations ranging from 1 % to 7 % were synthesized using an environmentally friendly combustion technique. These materials were then analyzed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV–Visible diffuse reflectance spectroscopy (UV–Visible DRS). The resulting crystallite size was determined to be between 20 nm and 25 nm. By applying the Kubelka-Munk function, the band gap was calculated and found to vary from 2.55 eV to 2.99 eV. For the investigation of electrochemical properties, modified carbon paste electrodes containing ZnO: Fe3+ (1–7 mol%) were subjected to cyclic voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). Notably, the ZnO: Fe3+ (1 mol%) electrode demonstrated promising characteristics for supercapacitor applications. This same electrode was also utilized for detecting paracetamol and glucose at concentrations ranging from 1 mM to 5 mM using CV and chronoamperometry techniques, underscoring its potential as an electrochemical sensor. Moreover, the photocatalytic capability of ZnO: Fe3+ (1 mol%) nanomaterial was assessed through the degradation of Methylene Blue and Acid Orange-8 dyes. The results were impressive, with this particular photocatalyst achieving 94.45 % degradation of Methylene Blue and 96.29% degradation of acid orange-8 dye. These outcomes validate its efficacy for applications in photocatalytic dye degradation. In conclusion, the ZnO: Fe3+ (1 mol%) nanomaterial synthesized via environmentally friendly means exhibits substantial promise for diverse applications in electrochemical and photocatalytic domains.</abstract><pub>Elsevier</pub><doi>10.1016/j.chphi.2023.100387</doi><orcidid>https://orcid.org/0000-0003-1958-9524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2667-0224
ispartof Chemical physics impact, 2023-12, Vol.7, p.100387, Article 100387
issn 2667-0224
2667-0224
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_52a15ae820b044cb8099121017c21818
source ScienceDirect Additional Titles
subjects Chronoamperometry
Cyclic voltammetry
Methylene blue
Multifunctional applications
Photocatalytic degradation
ZnO
title Energy storage, sensors, photocatalytic applications of green synthesized ZnO: Fe3+ nanomaterials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20storage,%20sensors,%20photocatalytic%20applications%20of%20green%20synthesized%20ZnO:%20Fe3+%20nanomaterials&rft.jtitle=Chemical%20physics%20impact&rft.au=Naik,%20Ramachandra&rft.date=2023-12&rft.volume=7&rft.spage=100387&rft.pages=100387-&rft.artnum=100387&rft.issn=2667-0224&rft.eissn=2667-0224&rft_id=info:doi/10.1016/j.chphi.2023.100387&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_52a15ae820b044cb8099121017c21818%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c290t-81db20b473d0791dcf56e35858797cca8fab7a5a682544bc1bf7a4cc3303712f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true