Loading…

A Systematic Literature Review on Text Generation Using Deep Neural Network Models

In recent years, significant progress has been made in text generation. The latest text generation models are revolutionizing the domain by generating human-like text. It has gained wide popularity recently in many domains like news, social networks, movie scriptwriting, and poetry composition, to n...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.53490-53503
Main Authors: Fatima, Noureen, Imran, Ali Shariq, Kastrati, Zenun, Daudpota, Sher Muhammad, Soomro, Abdullah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3
cites cdi_FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3
container_end_page 53503
container_issue
container_start_page 53490
container_title IEEE access
container_volume 10
creator Fatima, Noureen
Imran, Ali Shariq
Kastrati, Zenun
Daudpota, Sher Muhammad
Soomro, Abdullah
description In recent years, significant progress has been made in text generation. The latest text generation models are revolutionizing the domain by generating human-like text. It has gained wide popularity recently in many domains like news, social networks, movie scriptwriting, and poetry composition, to name a few. The application of text generation in various fields has resulted in a lot of interest from the scientific community in this area. To the best of our knowledge, there is a lack of extensive review and an up-to-date body of knowledge of text generation deep learning models. Therefore, this survey aims to bring together all the relevant work in a systematic mapping study highlighting key contributions from various researchers over the years, focusing on the past, present, and future trends. In this work, we have identified 90 primary studies from 2015 to 2021 employing the PRISMA framework. We also identified research gaps that are further needed to be explored by the research community. In the end, we provide some future directions for researchers and guidelines for practitioners based on the findings of this review.
doi_str_mv 10.1109/ACCESS.2022.3174108
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_52c6b540da8f4261a64a789d0ff38e6f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9771452</ieee_id><doaj_id>oai_doaj_org_article_52c6b540da8f4261a64a789d0ff38e6f</doaj_id><sourcerecordid>2669160081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3</originalsourceid><addsrcrecordid>eNpVkUtP3DAUhSPUSiDKL2BjqetM_X4sRwOlSFOQGOjWcuIb5GmIp3bSKf--HoIQeHPt63M--fpU1TnBC0Kw-bZcrS43mwXFlC4YUZxgfVSdUCJNzQSTn97tj6uznLe4LF1aQp1Ud0u0ec4jPLkxtGgdRkhunBKgO_gbYI_igO7h34iuYDjchHJ-yGF4RBcAO3QDU3J9KeM-pt_oZ_TQ5y_V5871Gc5e62n18P3yfvWjXt9eXa-W67plSo510yqjiOmobrTSWjjFtTfMc0Kdks4IyYnCyhhCmBSYSyEbJTrliPC-Ac9Oq-uZ66Pb2l0KTy492-iCfWnE9GhdKlP1YAVtZSM49k53nEriJHdKG4-7jmmQXWHVMyvvYTc1H2gX4dfyhdYPky2PwYwV_ddZv0vxzwR5tNs4paGMa6mUhsjDDxcVm1Vtijkn6N64BNtDdnbOzh6ys6_ZFdf57AoA8OYwShEuKPsP0zaTCw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669160081</pqid></control><display><type>article</type><title>A Systematic Literature Review on Text Generation Using Deep Neural Network Models</title><source>IEEE Xplore Open Access Journals</source><creator>Fatima, Noureen ; Imran, Ali Shariq ; Kastrati, Zenun ; Daudpota, Sher Muhammad ; Soomro, Abdullah</creator><creatorcontrib>Fatima, Noureen ; Imran, Ali Shariq ; Kastrati, Zenun ; Daudpota, Sher Muhammad ; Soomro, Abdullah</creatorcontrib><description>In recent years, significant progress has been made in text generation. The latest text generation models are revolutionizing the domain by generating human-like text. It has gained wide popularity recently in many domains like news, social networks, movie scriptwriting, and poetry composition, to name a few. The application of text generation in various fields has resulted in a lot of interest from the scientific community in this area. To the best of our knowledge, there is a lack of extensive review and an up-to-date body of knowledge of text generation deep learning models. Therefore, this survey aims to bring together all the relevant work in a systematic mapping study highlighting key contributions from various researchers over the years, focusing on the past, present, and future trends. In this work, we have identified 90 primary studies from 2015 to 2021 employing the PRISMA framework. We also identified research gaps that are further needed to be explored by the research community. In the end, we provide some future directions for researchers and guidelines for practitioners based on the findings of this review.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3174108</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Bibliographies ; Computer and Information Sciences Computer Science ; Data models ; Data- och informationsvetenskap ; Deep learning ; Domains ; GPT ; Literature reviews ; LSTM ; Machine learning ; Measurement ; Motion pictures ; natural langauge processing ; natural language processing ; neural network ; Predictive models ; quality metrics ; Social networks ; Systematic literature review ; Systematics ; text generation survey</subject><ispartof>IEEE access, 2022, Vol.10, p.53490-53503</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3</citedby><cites>FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3</cites><orcidid>0000-0002-2416-2878 ; 0000-0001-7423-9346 ; 0000-0002-0199-2377 ; 0000-0001-6684-751X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9771452$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4010,27610,27900,27901,27902,54908</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-113033$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Fatima, Noureen</creatorcontrib><creatorcontrib>Imran, Ali Shariq</creatorcontrib><creatorcontrib>Kastrati, Zenun</creatorcontrib><creatorcontrib>Daudpota, Sher Muhammad</creatorcontrib><creatorcontrib>Soomro, Abdullah</creatorcontrib><title>A Systematic Literature Review on Text Generation Using Deep Neural Network Models</title><title>IEEE access</title><addtitle>Access</addtitle><description>In recent years, significant progress has been made in text generation. The latest text generation models are revolutionizing the domain by generating human-like text. It has gained wide popularity recently in many domains like news, social networks, movie scriptwriting, and poetry composition, to name a few. The application of text generation in various fields has resulted in a lot of interest from the scientific community in this area. To the best of our knowledge, there is a lack of extensive review and an up-to-date body of knowledge of text generation deep learning models. Therefore, this survey aims to bring together all the relevant work in a systematic mapping study highlighting key contributions from various researchers over the years, focusing on the past, present, and future trends. In this work, we have identified 90 primary studies from 2015 to 2021 employing the PRISMA framework. We also identified research gaps that are further needed to be explored by the research community. In the end, we provide some future directions for researchers and guidelines for practitioners based on the findings of this review.</description><subject>Artificial neural networks</subject><subject>Bibliographies</subject><subject>Computer and Information Sciences Computer Science</subject><subject>Data models</subject><subject>Data- och informationsvetenskap</subject><subject>Deep learning</subject><subject>Domains</subject><subject>GPT</subject><subject>Literature reviews</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Motion pictures</subject><subject>natural langauge processing</subject><subject>natural language processing</subject><subject>neural network</subject><subject>Predictive models</subject><subject>quality metrics</subject><subject>Social networks</subject><subject>Systematic literature review</subject><subject>Systematics</subject><subject>text generation survey</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpVkUtP3DAUhSPUSiDKL2BjqetM_X4sRwOlSFOQGOjWcuIb5GmIp3bSKf--HoIQeHPt63M--fpU1TnBC0Kw-bZcrS43mwXFlC4YUZxgfVSdUCJNzQSTn97tj6uznLe4LF1aQp1Ud0u0ec4jPLkxtGgdRkhunBKgO_gbYI_igO7h34iuYDjchHJ-yGF4RBcAO3QDU3J9KeM-pt_oZ_TQ5y_V5871Gc5e62n18P3yfvWjXt9eXa-W67plSo510yqjiOmobrTSWjjFtTfMc0Kdks4IyYnCyhhCmBSYSyEbJTrliPC-Ac9Oq-uZ66Pb2l0KTy492-iCfWnE9GhdKlP1YAVtZSM49k53nEriJHdKG4-7jmmQXWHVMyvvYTc1H2gX4dfyhdYPky2PwYwV_ddZv0vxzwR5tNs4paGMa6mUhsjDDxcVm1Vtijkn6N64BNtDdnbOzh6ys6_ZFdf57AoA8OYwShEuKPsP0zaTCw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Fatima, Noureen</creator><creator>Imran, Ali Shariq</creator><creator>Kastrati, Zenun</creator><creator>Daudpota, Sher Muhammad</creator><creator>Soomro, Abdullah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AGRUY</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D92</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2416-2878</orcidid><orcidid>https://orcid.org/0000-0001-7423-9346</orcidid><orcidid>https://orcid.org/0000-0002-0199-2377</orcidid><orcidid>https://orcid.org/0000-0001-6684-751X</orcidid></search><sort><creationdate>2022</creationdate><title>A Systematic Literature Review on Text Generation Using Deep Neural Network Models</title><author>Fatima, Noureen ; Imran, Ali Shariq ; Kastrati, Zenun ; Daudpota, Sher Muhammad ; Soomro, Abdullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Bibliographies</topic><topic>Computer and Information Sciences Computer Science</topic><topic>Data models</topic><topic>Data- och informationsvetenskap</topic><topic>Deep learning</topic><topic>Domains</topic><topic>GPT</topic><topic>Literature reviews</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Motion pictures</topic><topic>natural langauge processing</topic><topic>natural language processing</topic><topic>neural network</topic><topic>Predictive models</topic><topic>quality metrics</topic><topic>Social networks</topic><topic>Systematic literature review</topic><topic>Systematics</topic><topic>text generation survey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatima, Noureen</creatorcontrib><creatorcontrib>Imran, Ali Shariq</creatorcontrib><creatorcontrib>Kastrati, Zenun</creatorcontrib><creatorcontrib>Daudpota, Sher Muhammad</creatorcontrib><creatorcontrib>Soomro, Abdullah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SWEPUB Linnéuniversitetet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linnéuniversitetet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatima, Noureen</au><au>Imran, Ali Shariq</au><au>Kastrati, Zenun</au><au>Daudpota, Sher Muhammad</au><au>Soomro, Abdullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Systematic Literature Review on Text Generation Using Deep Neural Network Models</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>53490</spage><epage>53503</epage><pages>53490-53503</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, significant progress has been made in text generation. The latest text generation models are revolutionizing the domain by generating human-like text. It has gained wide popularity recently in many domains like news, social networks, movie scriptwriting, and poetry composition, to name a few. The application of text generation in various fields has resulted in a lot of interest from the scientific community in this area. To the best of our knowledge, there is a lack of extensive review and an up-to-date body of knowledge of text generation deep learning models. Therefore, this survey aims to bring together all the relevant work in a systematic mapping study highlighting key contributions from various researchers over the years, focusing on the past, present, and future trends. In this work, we have identified 90 primary studies from 2015 to 2021 employing the PRISMA framework. We also identified research gaps that are further needed to be explored by the research community. In the end, we provide some future directions for researchers and guidelines for practitioners based on the findings of this review.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3174108</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2416-2878</orcidid><orcidid>https://orcid.org/0000-0001-7423-9346</orcidid><orcidid>https://orcid.org/0000-0002-0199-2377</orcidid><orcidid>https://orcid.org/0000-0001-6684-751X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.53490-53503
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_52c6b540da8f4261a64a789d0ff38e6f
source IEEE Xplore Open Access Journals
subjects Artificial neural networks
Bibliographies
Computer and Information Sciences Computer Science
Data models
Data- och informationsvetenskap
Deep learning
Domains
GPT
Literature reviews
LSTM
Machine learning
Measurement
Motion pictures
natural langauge processing
natural language processing
neural network
Predictive models
quality metrics
Social networks
Systematic literature review
Systematics
text generation survey
title A Systematic Literature Review on Text Generation Using Deep Neural Network Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Systematic%20Literature%20Review%20on%20Text%20Generation%20Using%20Deep%20Neural%20Network%20Models&rft.jtitle=IEEE%20access&rft.au=Fatima,%20Noureen&rft.date=2022&rft.volume=10&rft.spage=53490&rft.epage=53503&rft.pages=53490-53503&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3174108&rft_dat=%3Cproquest_doaj_%3E2669160081%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2669160081&rft_id=info:pmid/&rft_ieee_id=9771452&rfr_iscdi=true