Loading…
A Systematic Literature Review on Text Generation Using Deep Neural Network Models
In recent years, significant progress has been made in text generation. The latest text generation models are revolutionizing the domain by generating human-like text. It has gained wide popularity recently in many domains like news, social networks, movie scriptwriting, and poetry composition, to n...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.53490-53503 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3 |
container_end_page | 53503 |
container_issue | |
container_start_page | 53490 |
container_title | IEEE access |
container_volume | 10 |
creator | Fatima, Noureen Imran, Ali Shariq Kastrati, Zenun Daudpota, Sher Muhammad Soomro, Abdullah |
description | In recent years, significant progress has been made in text generation. The latest text generation models are revolutionizing the domain by generating human-like text. It has gained wide popularity recently in many domains like news, social networks, movie scriptwriting, and poetry composition, to name a few. The application of text generation in various fields has resulted in a lot of interest from the scientific community in this area. To the best of our knowledge, there is a lack of extensive review and an up-to-date body of knowledge of text generation deep learning models. Therefore, this survey aims to bring together all the relevant work in a systematic mapping study highlighting key contributions from various researchers over the years, focusing on the past, present, and future trends. In this work, we have identified 90 primary studies from 2015 to 2021 employing the PRISMA framework. We also identified research gaps that are further needed to be explored by the research community. In the end, we provide some future directions for researchers and guidelines for practitioners based on the findings of this review. |
doi_str_mv | 10.1109/ACCESS.2022.3174108 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_52c6b540da8f4261a64a789d0ff38e6f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9771452</ieee_id><doaj_id>oai_doaj_org_article_52c6b540da8f4261a64a789d0ff38e6f</doaj_id><sourcerecordid>2669160081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3</originalsourceid><addsrcrecordid>eNpVkUtP3DAUhSPUSiDKL2BjqetM_X4sRwOlSFOQGOjWcuIb5GmIp3bSKf--HoIQeHPt63M--fpU1TnBC0Kw-bZcrS43mwXFlC4YUZxgfVSdUCJNzQSTn97tj6uznLe4LF1aQp1Ud0u0ec4jPLkxtGgdRkhunBKgO_gbYI_igO7h34iuYDjchHJ-yGF4RBcAO3QDU3J9KeM-pt_oZ_TQ5y_V5871Gc5e62n18P3yfvWjXt9eXa-W67plSo510yqjiOmobrTSWjjFtTfMc0Kdks4IyYnCyhhCmBSYSyEbJTrliPC-Ac9Oq-uZ66Pb2l0KTy492-iCfWnE9GhdKlP1YAVtZSM49k53nEriJHdKG4-7jmmQXWHVMyvvYTc1H2gX4dfyhdYPky2PwYwV_ddZv0vxzwR5tNs4paGMa6mUhsjDDxcVm1Vtijkn6N64BNtDdnbOzh6ys6_ZFdf57AoA8OYwShEuKPsP0zaTCw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669160081</pqid></control><display><type>article</type><title>A Systematic Literature Review on Text Generation Using Deep Neural Network Models</title><source>IEEE Xplore Open Access Journals</source><creator>Fatima, Noureen ; Imran, Ali Shariq ; Kastrati, Zenun ; Daudpota, Sher Muhammad ; Soomro, Abdullah</creator><creatorcontrib>Fatima, Noureen ; Imran, Ali Shariq ; Kastrati, Zenun ; Daudpota, Sher Muhammad ; Soomro, Abdullah</creatorcontrib><description>In recent years, significant progress has been made in text generation. The latest text generation models are revolutionizing the domain by generating human-like text. It has gained wide popularity recently in many domains like news, social networks, movie scriptwriting, and poetry composition, to name a few. The application of text generation in various fields has resulted in a lot of interest from the scientific community in this area. To the best of our knowledge, there is a lack of extensive review and an up-to-date body of knowledge of text generation deep learning models. Therefore, this survey aims to bring together all the relevant work in a systematic mapping study highlighting key contributions from various researchers over the years, focusing on the past, present, and future trends. In this work, we have identified 90 primary studies from 2015 to 2021 employing the PRISMA framework. We also identified research gaps that are further needed to be explored by the research community. In the end, we provide some future directions for researchers and guidelines for practitioners based on the findings of this review.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3174108</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Bibliographies ; Computer and Information Sciences Computer Science ; Data models ; Data- och informationsvetenskap ; Deep learning ; Domains ; GPT ; Literature reviews ; LSTM ; Machine learning ; Measurement ; Motion pictures ; natural langauge processing ; natural language processing ; neural network ; Predictive models ; quality metrics ; Social networks ; Systematic literature review ; Systematics ; text generation survey</subject><ispartof>IEEE access, 2022, Vol.10, p.53490-53503</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3</citedby><cites>FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3</cites><orcidid>0000-0002-2416-2878 ; 0000-0001-7423-9346 ; 0000-0002-0199-2377 ; 0000-0001-6684-751X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9771452$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4010,27610,27900,27901,27902,54908</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-113033$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Fatima, Noureen</creatorcontrib><creatorcontrib>Imran, Ali Shariq</creatorcontrib><creatorcontrib>Kastrati, Zenun</creatorcontrib><creatorcontrib>Daudpota, Sher Muhammad</creatorcontrib><creatorcontrib>Soomro, Abdullah</creatorcontrib><title>A Systematic Literature Review on Text Generation Using Deep Neural Network Models</title><title>IEEE access</title><addtitle>Access</addtitle><description>In recent years, significant progress has been made in text generation. The latest text generation models are revolutionizing the domain by generating human-like text. It has gained wide popularity recently in many domains like news, social networks, movie scriptwriting, and poetry composition, to name a few. The application of text generation in various fields has resulted in a lot of interest from the scientific community in this area. To the best of our knowledge, there is a lack of extensive review and an up-to-date body of knowledge of text generation deep learning models. Therefore, this survey aims to bring together all the relevant work in a systematic mapping study highlighting key contributions from various researchers over the years, focusing on the past, present, and future trends. In this work, we have identified 90 primary studies from 2015 to 2021 employing the PRISMA framework. We also identified research gaps that are further needed to be explored by the research community. In the end, we provide some future directions for researchers and guidelines for practitioners based on the findings of this review.</description><subject>Artificial neural networks</subject><subject>Bibliographies</subject><subject>Computer and Information Sciences Computer Science</subject><subject>Data models</subject><subject>Data- och informationsvetenskap</subject><subject>Deep learning</subject><subject>Domains</subject><subject>GPT</subject><subject>Literature reviews</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Motion pictures</subject><subject>natural langauge processing</subject><subject>natural language processing</subject><subject>neural network</subject><subject>Predictive models</subject><subject>quality metrics</subject><subject>Social networks</subject><subject>Systematic literature review</subject><subject>Systematics</subject><subject>text generation survey</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpVkUtP3DAUhSPUSiDKL2BjqetM_X4sRwOlSFOQGOjWcuIb5GmIp3bSKf--HoIQeHPt63M--fpU1TnBC0Kw-bZcrS43mwXFlC4YUZxgfVSdUCJNzQSTn97tj6uznLe4LF1aQp1Ud0u0ec4jPLkxtGgdRkhunBKgO_gbYI_igO7h34iuYDjchHJ-yGF4RBcAO3QDU3J9KeM-pt_oZ_TQ5y_V5871Gc5e62n18P3yfvWjXt9eXa-W67plSo510yqjiOmobrTSWjjFtTfMc0Kdks4IyYnCyhhCmBSYSyEbJTrliPC-Ac9Oq-uZ66Pb2l0KTy492-iCfWnE9GhdKlP1YAVtZSM49k53nEriJHdKG4-7jmmQXWHVMyvvYTc1H2gX4dfyhdYPky2PwYwV_ddZv0vxzwR5tNs4paGMa6mUhsjDDxcVm1Vtijkn6N64BNtDdnbOzh6ys6_ZFdf57AoA8OYwShEuKPsP0zaTCw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Fatima, Noureen</creator><creator>Imran, Ali Shariq</creator><creator>Kastrati, Zenun</creator><creator>Daudpota, Sher Muhammad</creator><creator>Soomro, Abdullah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AGRUY</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D92</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2416-2878</orcidid><orcidid>https://orcid.org/0000-0001-7423-9346</orcidid><orcidid>https://orcid.org/0000-0002-0199-2377</orcidid><orcidid>https://orcid.org/0000-0001-6684-751X</orcidid></search><sort><creationdate>2022</creationdate><title>A Systematic Literature Review on Text Generation Using Deep Neural Network Models</title><author>Fatima, Noureen ; Imran, Ali Shariq ; Kastrati, Zenun ; Daudpota, Sher Muhammad ; Soomro, Abdullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Bibliographies</topic><topic>Computer and Information Sciences Computer Science</topic><topic>Data models</topic><topic>Data- och informationsvetenskap</topic><topic>Deep learning</topic><topic>Domains</topic><topic>GPT</topic><topic>Literature reviews</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Motion pictures</topic><topic>natural langauge processing</topic><topic>natural language processing</topic><topic>neural network</topic><topic>Predictive models</topic><topic>quality metrics</topic><topic>Social networks</topic><topic>Systematic literature review</topic><topic>Systematics</topic><topic>text generation survey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatima, Noureen</creatorcontrib><creatorcontrib>Imran, Ali Shariq</creatorcontrib><creatorcontrib>Kastrati, Zenun</creatorcontrib><creatorcontrib>Daudpota, Sher Muhammad</creatorcontrib><creatorcontrib>Soomro, Abdullah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SWEPUB Linnéuniversitetet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linnéuniversitetet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatima, Noureen</au><au>Imran, Ali Shariq</au><au>Kastrati, Zenun</au><au>Daudpota, Sher Muhammad</au><au>Soomro, Abdullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Systematic Literature Review on Text Generation Using Deep Neural Network Models</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>53490</spage><epage>53503</epage><pages>53490-53503</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, significant progress has been made in text generation. The latest text generation models are revolutionizing the domain by generating human-like text. It has gained wide popularity recently in many domains like news, social networks, movie scriptwriting, and poetry composition, to name a few. The application of text generation in various fields has resulted in a lot of interest from the scientific community in this area. To the best of our knowledge, there is a lack of extensive review and an up-to-date body of knowledge of text generation deep learning models. Therefore, this survey aims to bring together all the relevant work in a systematic mapping study highlighting key contributions from various researchers over the years, focusing on the past, present, and future trends. In this work, we have identified 90 primary studies from 2015 to 2021 employing the PRISMA framework. We also identified research gaps that are further needed to be explored by the research community. In the end, we provide some future directions for researchers and guidelines for practitioners based on the findings of this review.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3174108</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2416-2878</orcidid><orcidid>https://orcid.org/0000-0001-7423-9346</orcidid><orcidid>https://orcid.org/0000-0002-0199-2377</orcidid><orcidid>https://orcid.org/0000-0001-6684-751X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.53490-53503 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_52c6b540da8f4261a64a789d0ff38e6f |
source | IEEE Xplore Open Access Journals |
subjects | Artificial neural networks Bibliographies Computer and Information Sciences Computer Science Data models Data- och informationsvetenskap Deep learning Domains GPT Literature reviews LSTM Machine learning Measurement Motion pictures natural langauge processing natural language processing neural network Predictive models quality metrics Social networks Systematic literature review Systematics text generation survey |
title | A Systematic Literature Review on Text Generation Using Deep Neural Network Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Systematic%20Literature%20Review%20on%20Text%20Generation%20Using%20Deep%20Neural%20Network%20Models&rft.jtitle=IEEE%20access&rft.au=Fatima,%20Noureen&rft.date=2022&rft.volume=10&rft.spage=53490&rft.epage=53503&rft.pages=53490-53503&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3174108&rft_dat=%3Cproquest_doaj_%3E2669160081%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-bc79719f28b87885a748d93d412a76a95641707991136504656b75f7a15ddbed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2669160081&rft_id=info:pmid/&rft_ieee_id=9771452&rfr_iscdi=true |