Loading…

Influence of Controlling Plasma Gas Species and Temperature on Reactive Species and Bactericidal Effect of the Plasma

In this study, plasma gas species and temperature were varied to evaluate the reactive species produced and the bactericidal effect of plasma. Nitrogen, carbon dioxide, oxygen, and argon were used as the gas species, and the gas temperature of each plasma was varied from 30 to 90 °C. Singlet oxygen,...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2021-12, Vol.11 (24), p.11674
Main Authors: Suenaga, Yuma, Takamatsu, Toshihiro, Aizawa, Toshiki, Moriya, Shohei, Matsumura, Yuriko, Iwasawa, Atsuo, Okino, Akitoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, plasma gas species and temperature were varied to evaluate the reactive species produced and the bactericidal effect of plasma. Nitrogen, carbon dioxide, oxygen, and argon were used as the gas species, and the gas temperature of each plasma was varied from 30 to 90 °C. Singlet oxygen, OH radicals, hydrogen peroxide, and ozone generated by the plasma were trapped in a liquid, and then measured. Nitrogen plasma produced up to 172 µM of the OH radical, which was higher than that of the other plasmas. In carbon dioxide plasma, the concentration of singlet oxygen increased from 77 to 812 µM, as the plasma gas temperature increased from 30 to 90 °C. The bactericidal effect of carbon dioxide and nitrogen plasma was evaluated using bactericidal ability, which indicated the log reduction per minute. In carbon dioxide plasma, the bactericidal ability increased from 5.6 to 38.8, as the temperature of the plasma gas increased from 30 to 90 °C. Conversely, nitrogen plasma did not exhibit a high bactericidal effect. These results demonstrate that the plasma gas type and temperature have a significant influence on the reactive species produced and the bactericidal effect of plasma.
ISSN:2076-3417
2076-3417
DOI:10.3390/app112411674