Loading…
Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis
The yak (Bos grunniens) is essential to the livelihoods of Tibetan people on the Qinghai-Tibet Plateau; however, its growth and productivity are constrained by the region's harsh climate and high altitude. Yak skeletal muscle myoblasts, which have evolved to thrive under these challenging condi...
Saved in:
Published in: | BMC genomics 2024-11, Vol.25 (1), p.1146-15, Article 1146 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-8701b2ed49ce7eccfd1c813846bdc2991edeb4401f90ccd9d9c43d9052fdafd83 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 1146 |
container_title | BMC genomics |
container_volume | 25 |
creator | Ma, Xiaoming La, Yongfu Wang, Tong Huang, Chun Feng, Fen Guo, Xian Bao, Pengjia Wu, Xiaoyun Chu, Min Liang, Chunnian Yan, Ping |
description | The yak (Bos grunniens) is essential to the livelihoods of Tibetan people on the Qinghai-Tibet Plateau; however, its growth and productivity are constrained by the region's harsh climate and high altitude. Yak skeletal muscle myoblasts, which have evolved to thrive under these challenging conditions, offer a valuable model for investigating muscle development. In this study, we performed transcriptome profiling of yak longissimus dorsi muscle at different growth stages, identifying a key long non-coding RNA, LncRNA-XR_314844 (Lnc-MEG8), with a potential role in muscle development.
We developed a novel technique to isolate high-quality yak myoblasts, enabling detailed analysis of Lnc-MEG8. Our results indicated that Lnc-MEG8's subcellular localization varies during muscle cell growth: it is found in both the nucleus and cytoplasm during proliferation but shifts mainly to the cytoplasm during differentiation. Functional experiments showed that Lnc-MEG8 promotes cell proliferation and inhibits differentiation, while its silencing had the opposite effect. Further analysis revealed that both Lnc-MEG8 and the gene RTL1 share miR-22-3p as a common target. Dual-luciferase assays confirmed miR-22-3p directly targets both Lnc-MEG8 and RTL1 mRNA. Co-transfection of Lnc-MEG8 and a miR-22-3p mimic restored RTL1 expression, highlighting Lnc-MEG8's regulatory role. Lnc-MEG8 also counteracts miR-22-3p's suppression of key muscle genes such as MyF5 and MyoG, facilitating myotube formation.
These findings demonstrate that the Lnc-MEG8-miR-22-3p-RTL1 axis plays a crucial role in yak muscle development, providing insights that could advance muscle tissue engineering and enhance yak meat quality. |
doi_str_mv | 10.1186/s12864-024-11038-y |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_530691ba4d98481f92afaedd7735cf5e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818061169</galeid><doaj_id>oai_doaj_org_article_530691ba4d98481f92afaedd7735cf5e</doaj_id><sourcerecordid>A818061169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-8701b2ed49ce7eccfd1c813846bdc2991edeb4401f90ccd9d9c43d9052fdafd83</originalsourceid><addsrcrecordid>eNptkkFv1DAQhSMEoqXwBzigSFzgkNZjO4l9QlVVyopFSEs5W449Tr0k8TZOqu6_x-2W0kXIB1vj773RjF6WvQVyDCCqkwhUVLwglBcAhIli-yw7BF5DQaHiz5-8D7JXMa4JgVrQ8mV2wGRFuKDiMPu6HEzx7fxC5CO2c6cnjPlW_8r7bWg6HafceudwxGHyevJhyG-8zqcrzHu_Kigt2OZkdbmEXN_6-Dp74XQX8c3DfZT9_Hx-efalWH6_WJydLgvDazkVoibQULRcGqzRGGfBCGCCV401VEpAiw3nBJwkxlhppeHMSlJSZ7Wzgh1li52vDXqtNqPv9bhVQXt1Xwhjq_Q4edOhKhmpJDSaWym4SI5UO43W1jUrjSsxeX3aeW3mpkdr0qCj7vZM938Gf6XacKMAKkIqUSaHDw8OY7ieMU6q99Fg1-kBwxwVA8ZqxkTFEvr-H3Qd5nFIu0oUp1QCl-Qv1eo0gR9cSI3Nnak6FSBIlVrLRB3_h0rHYu9NGND5VN8TfNwTJGbC26nVc4xq8WO1z9Ida8YQ44jucSFA1F321C57KmVP3WdPbZPo3dNVPkr-hI39BpmP0aM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142291490</pqid></control><display><type>article</type><title>Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Ma, Xiaoming ; La, Yongfu ; Wang, Tong ; Huang, Chun ; Feng, Fen ; Guo, Xian ; Bao, Pengjia ; Wu, Xiaoyun ; Chu, Min ; Liang, Chunnian ; Yan, Ping</creator><creatorcontrib>Ma, Xiaoming ; La, Yongfu ; Wang, Tong ; Huang, Chun ; Feng, Fen ; Guo, Xian ; Bao, Pengjia ; Wu, Xiaoyun ; Chu, Min ; Liang, Chunnian ; Yan, Ping</creatorcontrib><description>The yak (Bos grunniens) is essential to the livelihoods of Tibetan people on the Qinghai-Tibet Plateau; however, its growth and productivity are constrained by the region's harsh climate and high altitude. Yak skeletal muscle myoblasts, which have evolved to thrive under these challenging conditions, offer a valuable model for investigating muscle development. In this study, we performed transcriptome profiling of yak longissimus dorsi muscle at different growth stages, identifying a key long non-coding RNA, LncRNA-XR_314844 (Lnc-MEG8), with a potential role in muscle development.
We developed a novel technique to isolate high-quality yak myoblasts, enabling detailed analysis of Lnc-MEG8. Our results indicated that Lnc-MEG8's subcellular localization varies during muscle cell growth: it is found in both the nucleus and cytoplasm during proliferation but shifts mainly to the cytoplasm during differentiation. Functional experiments showed that Lnc-MEG8 promotes cell proliferation and inhibits differentiation, while its silencing had the opposite effect. Further analysis revealed that both Lnc-MEG8 and the gene RTL1 share miR-22-3p as a common target. Dual-luciferase assays confirmed miR-22-3p directly targets both Lnc-MEG8 and RTL1 mRNA. Co-transfection of Lnc-MEG8 and a miR-22-3p mimic restored RTL1 expression, highlighting Lnc-MEG8's regulatory role. Lnc-MEG8 also counteracts miR-22-3p's suppression of key muscle genes such as MyF5 and MyoG, facilitating myotube formation.
These findings demonstrate that the Lnc-MEG8-miR-22-3p-RTL1 axis plays a crucial role in yak muscle development, providing insights that could advance muscle tissue engineering and enhance yak meat quality.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-024-11038-y</identifier><identifier>PMID: 39604828</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Animal husbandry ; Animals ; Atrophy ; Bos grunniens ; Care and treatment ; Cattle ; Cell differentiation ; Cell Differentiation - genetics ; Cell growth ; Cell Proliferation ; Chromosome 3 ; Competition ; Cytoplasm ; Diagnosis ; Differentiation ; Diseases ; Fibroblasts ; Gene Expression Profiling ; Genes ; Genetic aspects ; Growth ; Health aspects ; High altitude ; Livestock ; Lnc-MEG8 ; Localization ; Medical examination ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; MiR-22-3p ; Muscle Development - genetics ; Muscle diseases ; Muscle, Skeletal - cytology ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Myoblasts ; Myoblasts - cytology ; Myoblasts - metabolism ; Myotubes ; Proteins ; RNA ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; RTL1 ; Skeletal muscle ; Skeletal myoblasts ; Stem cells ; Tissue engineering ; Transcriptomes ; Transfection ; Yak ; Yaks</subject><ispartof>BMC genomics, 2024-11, Vol.25 (1), p.1146-15, Article 1146</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c479t-8701b2ed49ce7eccfd1c813846bdc2991edeb4401f90ccd9d9c43d9052fdafd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600685/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3142291490?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39604828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Xiaoming</creatorcontrib><creatorcontrib>La, Yongfu</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Huang, Chun</creatorcontrib><creatorcontrib>Feng, Fen</creatorcontrib><creatorcontrib>Guo, Xian</creatorcontrib><creatorcontrib>Bao, Pengjia</creatorcontrib><creatorcontrib>Wu, Xiaoyun</creatorcontrib><creatorcontrib>Chu, Min</creatorcontrib><creatorcontrib>Liang, Chunnian</creatorcontrib><creatorcontrib>Yan, Ping</creatorcontrib><title>Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>The yak (Bos grunniens) is essential to the livelihoods of Tibetan people on the Qinghai-Tibet Plateau; however, its growth and productivity are constrained by the region's harsh climate and high altitude. Yak skeletal muscle myoblasts, which have evolved to thrive under these challenging conditions, offer a valuable model for investigating muscle development. In this study, we performed transcriptome profiling of yak longissimus dorsi muscle at different growth stages, identifying a key long non-coding RNA, LncRNA-XR_314844 (Lnc-MEG8), with a potential role in muscle development.
We developed a novel technique to isolate high-quality yak myoblasts, enabling detailed analysis of Lnc-MEG8. Our results indicated that Lnc-MEG8's subcellular localization varies during muscle cell growth: it is found in both the nucleus and cytoplasm during proliferation but shifts mainly to the cytoplasm during differentiation. Functional experiments showed that Lnc-MEG8 promotes cell proliferation and inhibits differentiation, while its silencing had the opposite effect. Further analysis revealed that both Lnc-MEG8 and the gene RTL1 share miR-22-3p as a common target. Dual-luciferase assays confirmed miR-22-3p directly targets both Lnc-MEG8 and RTL1 mRNA. Co-transfection of Lnc-MEG8 and a miR-22-3p mimic restored RTL1 expression, highlighting Lnc-MEG8's regulatory role. Lnc-MEG8 also counteracts miR-22-3p's suppression of key muscle genes such as MyF5 and MyoG, facilitating myotube formation.
These findings demonstrate that the Lnc-MEG8-miR-22-3p-RTL1 axis plays a crucial role in yak muscle development, providing insights that could advance muscle tissue engineering and enhance yak meat quality.</description><subject>Animal husbandry</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Bos grunniens</subject><subject>Care and treatment</subject><subject>Cattle</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell growth</subject><subject>Cell Proliferation</subject><subject>Chromosome 3</subject><subject>Competition</subject><subject>Cytoplasm</subject><subject>Diagnosis</subject><subject>Differentiation</subject><subject>Diseases</subject><subject>Fibroblasts</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Growth</subject><subject>Health aspects</subject><subject>High altitude</subject><subject>Livestock</subject><subject>Lnc-MEG8</subject><subject>Localization</subject><subject>Medical examination</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>MiR-22-3p</subject><subject>Muscle Development - genetics</subject><subject>Muscle diseases</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myoblasts</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - metabolism</subject><subject>Myotubes</subject><subject>Proteins</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RTL1</subject><subject>Skeletal muscle</subject><subject>Skeletal myoblasts</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Transcriptomes</subject><subject>Transfection</subject><subject>Yak</subject><subject>Yaks</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkFv1DAQhSMEoqXwBzigSFzgkNZjO4l9QlVVyopFSEs5W449Tr0k8TZOqu6_x-2W0kXIB1vj773RjF6WvQVyDCCqkwhUVLwglBcAhIli-yw7BF5DQaHiz5-8D7JXMa4JgVrQ8mV2wGRFuKDiMPu6HEzx7fxC5CO2c6cnjPlW_8r7bWg6HafceudwxGHyevJhyG-8zqcrzHu_Kigt2OZkdbmEXN_6-Dp74XQX8c3DfZT9_Hx-efalWH6_WJydLgvDazkVoibQULRcGqzRGGfBCGCCV401VEpAiw3nBJwkxlhppeHMSlJSZ7Wzgh1li52vDXqtNqPv9bhVQXt1Xwhjq_Q4edOhKhmpJDSaWym4SI5UO43W1jUrjSsxeX3aeW3mpkdr0qCj7vZM938Gf6XacKMAKkIqUSaHDw8OY7ieMU6q99Fg1-kBwxwVA8ZqxkTFEvr-H3Qd5nFIu0oUp1QCl-Qv1eo0gR9cSI3Nnak6FSBIlVrLRB3_h0rHYu9NGND5VN8TfNwTJGbC26nVc4xq8WO1z9Ida8YQ44jucSFA1F321C57KmVP3WdPbZPo3dNVPkr-hI39BpmP0aM</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>Ma, Xiaoming</creator><creator>La, Yongfu</creator><creator>Wang, Tong</creator><creator>Huang, Chun</creator><creator>Feng, Fen</creator><creator>Guo, Xian</creator><creator>Bao, Pengjia</creator><creator>Wu, Xiaoyun</creator><creator>Chu, Min</creator><creator>Liang, Chunnian</creator><creator>Yan, Ping</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241127</creationdate><title>Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis</title><author>Ma, Xiaoming ; La, Yongfu ; Wang, Tong ; Huang, Chun ; Feng, Fen ; Guo, Xian ; Bao, Pengjia ; Wu, Xiaoyun ; Chu, Min ; Liang, Chunnian ; Yan, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-8701b2ed49ce7eccfd1c813846bdc2991edeb4401f90ccd9d9c43d9052fdafd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animal husbandry</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Bos grunniens</topic><topic>Care and treatment</topic><topic>Cattle</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell growth</topic><topic>Cell Proliferation</topic><topic>Chromosome 3</topic><topic>Competition</topic><topic>Cytoplasm</topic><topic>Diagnosis</topic><topic>Differentiation</topic><topic>Diseases</topic><topic>Fibroblasts</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Growth</topic><topic>Health aspects</topic><topic>High altitude</topic><topic>Livestock</topic><topic>Lnc-MEG8</topic><topic>Localization</topic><topic>Medical examination</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>MiR-22-3p</topic><topic>Muscle Development - genetics</topic><topic>Muscle diseases</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myoblasts</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - metabolism</topic><topic>Myotubes</topic><topic>Proteins</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RTL1</topic><topic>Skeletal muscle</topic><topic>Skeletal myoblasts</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Transcriptomes</topic><topic>Transfection</topic><topic>Yak</topic><topic>Yaks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xiaoming</creatorcontrib><creatorcontrib>La, Yongfu</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Huang, Chun</creatorcontrib><creatorcontrib>Feng, Fen</creatorcontrib><creatorcontrib>Guo, Xian</creatorcontrib><creatorcontrib>Bao, Pengjia</creatorcontrib><creatorcontrib>Wu, Xiaoyun</creatorcontrib><creatorcontrib>Chu, Min</creatorcontrib><creatorcontrib>Liang, Chunnian</creatorcontrib><creatorcontrib>Yan, Ping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xiaoming</au><au>La, Yongfu</au><au>Wang, Tong</au><au>Huang, Chun</au><au>Feng, Fen</au><au>Guo, Xian</au><au>Bao, Pengjia</au><au>Wu, Xiaoyun</au><au>Chu, Min</au><au>Liang, Chunnian</au><au>Yan, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2024-11-27</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>1146</spage><epage>15</epage><pages>1146-15</pages><artnum>1146</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>The yak (Bos grunniens) is essential to the livelihoods of Tibetan people on the Qinghai-Tibet Plateau; however, its growth and productivity are constrained by the region's harsh climate and high altitude. Yak skeletal muscle myoblasts, which have evolved to thrive under these challenging conditions, offer a valuable model for investigating muscle development. In this study, we performed transcriptome profiling of yak longissimus dorsi muscle at different growth stages, identifying a key long non-coding RNA, LncRNA-XR_314844 (Lnc-MEG8), with a potential role in muscle development.
We developed a novel technique to isolate high-quality yak myoblasts, enabling detailed analysis of Lnc-MEG8. Our results indicated that Lnc-MEG8's subcellular localization varies during muscle cell growth: it is found in both the nucleus and cytoplasm during proliferation but shifts mainly to the cytoplasm during differentiation. Functional experiments showed that Lnc-MEG8 promotes cell proliferation and inhibits differentiation, while its silencing had the opposite effect. Further analysis revealed that both Lnc-MEG8 and the gene RTL1 share miR-22-3p as a common target. Dual-luciferase assays confirmed miR-22-3p directly targets both Lnc-MEG8 and RTL1 mRNA. Co-transfection of Lnc-MEG8 and a miR-22-3p mimic restored RTL1 expression, highlighting Lnc-MEG8's regulatory role. Lnc-MEG8 also counteracts miR-22-3p's suppression of key muscle genes such as MyF5 and MyoG, facilitating myotube formation.
These findings demonstrate that the Lnc-MEG8-miR-22-3p-RTL1 axis plays a crucial role in yak muscle development, providing insights that could advance muscle tissue engineering and enhance yak meat quality.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39604828</pmid><doi>10.1186/s12864-024-11038-y</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2024-11, Vol.25 (1), p.1146-15, Article 1146 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_530691ba4d98481f92afaedd7735cf5e |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Animal husbandry Animals Atrophy Bos grunniens Care and treatment Cattle Cell differentiation Cell Differentiation - genetics Cell growth Cell Proliferation Chromosome 3 Competition Cytoplasm Diagnosis Differentiation Diseases Fibroblasts Gene Expression Profiling Genes Genetic aspects Growth Health aspects High altitude Livestock Lnc-MEG8 Localization Medical examination MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism MiR-22-3p Muscle Development - genetics Muscle diseases Muscle, Skeletal - cytology Muscle, Skeletal - metabolism Muscles Musculoskeletal system Myoblasts Myoblasts - cytology Myoblasts - metabolism Myotubes Proteins RNA RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism RTL1 Skeletal muscle Skeletal myoblasts Stem cells Tissue engineering Transcriptomes Transfection Yak Yaks |
title | Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lnc-MEG8%20regulates%20yak%20myoblast%20differentiation%20via%20the%20miR-22-3p/RTL1%20axis&rft.jtitle=BMC%20genomics&rft.au=Ma,%20Xiaoming&rft.date=2024-11-27&rft.volume=25&rft.issue=1&rft.spage=1146&rft.epage=15&rft.pages=1146-15&rft.artnum=1146&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-024-11038-y&rft_dat=%3Cgale_doaj_%3EA818061169%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-8701b2ed49ce7eccfd1c813846bdc2991edeb4401f90ccd9d9c43d9052fdafd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142291490&rft_id=info:pmid/39604828&rft_galeid=A818061169&rfr_iscdi=true |