Loading…

Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis

The yak (Bos grunniens) is essential to the livelihoods of Tibetan people on the Qinghai-Tibet Plateau; however, its growth and productivity are constrained by the region's harsh climate and high altitude. Yak skeletal muscle myoblasts, which have evolved to thrive under these challenging condi...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2024-11, Vol.25 (1), p.1146-15, Article 1146
Main Authors: Ma, Xiaoming, La, Yongfu, Wang, Tong, Huang, Chun, Feng, Fen, Guo, Xian, Bao, Pengjia, Wu, Xiaoyun, Chu, Min, Liang, Chunnian, Yan, Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c479t-8701b2ed49ce7eccfd1c813846bdc2991edeb4401f90ccd9d9c43d9052fdafd83
container_end_page 15
container_issue 1
container_start_page 1146
container_title BMC genomics
container_volume 25
creator Ma, Xiaoming
La, Yongfu
Wang, Tong
Huang, Chun
Feng, Fen
Guo, Xian
Bao, Pengjia
Wu, Xiaoyun
Chu, Min
Liang, Chunnian
Yan, Ping
description The yak (Bos grunniens) is essential to the livelihoods of Tibetan people on the Qinghai-Tibet Plateau; however, its growth and productivity are constrained by the region's harsh climate and high altitude. Yak skeletal muscle myoblasts, which have evolved to thrive under these challenging conditions, offer a valuable model for investigating muscle development. In this study, we performed transcriptome profiling of yak longissimus dorsi muscle at different growth stages, identifying a key long non-coding RNA, LncRNA-XR_314844 (Lnc-MEG8), with a potential role in muscle development. We developed a novel technique to isolate high-quality yak myoblasts, enabling detailed analysis of Lnc-MEG8. Our results indicated that Lnc-MEG8's subcellular localization varies during muscle cell growth: it is found in both the nucleus and cytoplasm during proliferation but shifts mainly to the cytoplasm during differentiation. Functional experiments showed that Lnc-MEG8 promotes cell proliferation and inhibits differentiation, while its silencing had the opposite effect. Further analysis revealed that both Lnc-MEG8 and the gene RTL1 share miR-22-3p as a common target. Dual-luciferase assays confirmed miR-22-3p directly targets both Lnc-MEG8 and RTL1 mRNA. Co-transfection of Lnc-MEG8 and a miR-22-3p mimic restored RTL1 expression, highlighting Lnc-MEG8's regulatory role. Lnc-MEG8 also counteracts miR-22-3p's suppression of key muscle genes such as MyF5 and MyoG, facilitating myotube formation. These findings demonstrate that the Lnc-MEG8-miR-22-3p-RTL1 axis plays a crucial role in yak muscle development, providing insights that could advance muscle tissue engineering and enhance yak meat quality.
doi_str_mv 10.1186/s12864-024-11038-y
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_530691ba4d98481f92afaedd7735cf5e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818061169</galeid><doaj_id>oai_doaj_org_article_530691ba4d98481f92afaedd7735cf5e</doaj_id><sourcerecordid>A818061169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-8701b2ed49ce7eccfd1c813846bdc2991edeb4401f90ccd9d9c43d9052fdafd83</originalsourceid><addsrcrecordid>eNptkkFv1DAQhSMEoqXwBzigSFzgkNZjO4l9QlVVyopFSEs5W449Tr0k8TZOqu6_x-2W0kXIB1vj773RjF6WvQVyDCCqkwhUVLwglBcAhIli-yw7BF5DQaHiz5-8D7JXMa4JgVrQ8mV2wGRFuKDiMPu6HEzx7fxC5CO2c6cnjPlW_8r7bWg6HafceudwxGHyevJhyG-8zqcrzHu_Kigt2OZkdbmEXN_6-Dp74XQX8c3DfZT9_Hx-efalWH6_WJydLgvDazkVoibQULRcGqzRGGfBCGCCV401VEpAiw3nBJwkxlhppeHMSlJSZ7Wzgh1li52vDXqtNqPv9bhVQXt1Xwhjq_Q4edOhKhmpJDSaWym4SI5UO43W1jUrjSsxeX3aeW3mpkdr0qCj7vZM938Gf6XacKMAKkIqUSaHDw8OY7ieMU6q99Fg1-kBwxwVA8ZqxkTFEvr-H3Qd5nFIu0oUp1QCl-Qv1eo0gR9cSI3Nnak6FSBIlVrLRB3_h0rHYu9NGND5VN8TfNwTJGbC26nVc4xq8WO1z9Ida8YQ44jucSFA1F321C57KmVP3WdPbZPo3dNVPkr-hI39BpmP0aM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142291490</pqid></control><display><type>article</type><title>Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Ma, Xiaoming ; La, Yongfu ; Wang, Tong ; Huang, Chun ; Feng, Fen ; Guo, Xian ; Bao, Pengjia ; Wu, Xiaoyun ; Chu, Min ; Liang, Chunnian ; Yan, Ping</creator><creatorcontrib>Ma, Xiaoming ; La, Yongfu ; Wang, Tong ; Huang, Chun ; Feng, Fen ; Guo, Xian ; Bao, Pengjia ; Wu, Xiaoyun ; Chu, Min ; Liang, Chunnian ; Yan, Ping</creatorcontrib><description>The yak (Bos grunniens) is essential to the livelihoods of Tibetan people on the Qinghai-Tibet Plateau; however, its growth and productivity are constrained by the region's harsh climate and high altitude. Yak skeletal muscle myoblasts, which have evolved to thrive under these challenging conditions, offer a valuable model for investigating muscle development. In this study, we performed transcriptome profiling of yak longissimus dorsi muscle at different growth stages, identifying a key long non-coding RNA, LncRNA-XR_314844 (Lnc-MEG8), with a potential role in muscle development. We developed a novel technique to isolate high-quality yak myoblasts, enabling detailed analysis of Lnc-MEG8. Our results indicated that Lnc-MEG8's subcellular localization varies during muscle cell growth: it is found in both the nucleus and cytoplasm during proliferation but shifts mainly to the cytoplasm during differentiation. Functional experiments showed that Lnc-MEG8 promotes cell proliferation and inhibits differentiation, while its silencing had the opposite effect. Further analysis revealed that both Lnc-MEG8 and the gene RTL1 share miR-22-3p as a common target. Dual-luciferase assays confirmed miR-22-3p directly targets both Lnc-MEG8 and RTL1 mRNA. Co-transfection of Lnc-MEG8 and a miR-22-3p mimic restored RTL1 expression, highlighting Lnc-MEG8's regulatory role. Lnc-MEG8 also counteracts miR-22-3p's suppression of key muscle genes such as MyF5 and MyoG, facilitating myotube formation. These findings demonstrate that the Lnc-MEG8-miR-22-3p-RTL1 axis plays a crucial role in yak muscle development, providing insights that could advance muscle tissue engineering and enhance yak meat quality.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-024-11038-y</identifier><identifier>PMID: 39604828</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Animal husbandry ; Animals ; Atrophy ; Bos grunniens ; Care and treatment ; Cattle ; Cell differentiation ; Cell Differentiation - genetics ; Cell growth ; Cell Proliferation ; Chromosome 3 ; Competition ; Cytoplasm ; Diagnosis ; Differentiation ; Diseases ; Fibroblasts ; Gene Expression Profiling ; Genes ; Genetic aspects ; Growth ; Health aspects ; High altitude ; Livestock ; Lnc-MEG8 ; Localization ; Medical examination ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; MiR-22-3p ; Muscle Development - genetics ; Muscle diseases ; Muscle, Skeletal - cytology ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Myoblasts ; Myoblasts - cytology ; Myoblasts - metabolism ; Myotubes ; Proteins ; RNA ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; RTL1 ; Skeletal muscle ; Skeletal myoblasts ; Stem cells ; Tissue engineering ; Transcriptomes ; Transfection ; Yak ; Yaks</subject><ispartof>BMC genomics, 2024-11, Vol.25 (1), p.1146-15, Article 1146</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c479t-8701b2ed49ce7eccfd1c813846bdc2991edeb4401f90ccd9d9c43d9052fdafd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600685/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3142291490?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39604828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Xiaoming</creatorcontrib><creatorcontrib>La, Yongfu</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Huang, Chun</creatorcontrib><creatorcontrib>Feng, Fen</creatorcontrib><creatorcontrib>Guo, Xian</creatorcontrib><creatorcontrib>Bao, Pengjia</creatorcontrib><creatorcontrib>Wu, Xiaoyun</creatorcontrib><creatorcontrib>Chu, Min</creatorcontrib><creatorcontrib>Liang, Chunnian</creatorcontrib><creatorcontrib>Yan, Ping</creatorcontrib><title>Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>The yak (Bos grunniens) is essential to the livelihoods of Tibetan people on the Qinghai-Tibet Plateau; however, its growth and productivity are constrained by the region's harsh climate and high altitude. Yak skeletal muscle myoblasts, which have evolved to thrive under these challenging conditions, offer a valuable model for investigating muscle development. In this study, we performed transcriptome profiling of yak longissimus dorsi muscle at different growth stages, identifying a key long non-coding RNA, LncRNA-XR_314844 (Lnc-MEG8), with a potential role in muscle development. We developed a novel technique to isolate high-quality yak myoblasts, enabling detailed analysis of Lnc-MEG8. Our results indicated that Lnc-MEG8's subcellular localization varies during muscle cell growth: it is found in both the nucleus and cytoplasm during proliferation but shifts mainly to the cytoplasm during differentiation. Functional experiments showed that Lnc-MEG8 promotes cell proliferation and inhibits differentiation, while its silencing had the opposite effect. Further analysis revealed that both Lnc-MEG8 and the gene RTL1 share miR-22-3p as a common target. Dual-luciferase assays confirmed miR-22-3p directly targets both Lnc-MEG8 and RTL1 mRNA. Co-transfection of Lnc-MEG8 and a miR-22-3p mimic restored RTL1 expression, highlighting Lnc-MEG8's regulatory role. Lnc-MEG8 also counteracts miR-22-3p's suppression of key muscle genes such as MyF5 and MyoG, facilitating myotube formation. These findings demonstrate that the Lnc-MEG8-miR-22-3p-RTL1 axis plays a crucial role in yak muscle development, providing insights that could advance muscle tissue engineering and enhance yak meat quality.</description><subject>Animal husbandry</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Bos grunniens</subject><subject>Care and treatment</subject><subject>Cattle</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell growth</subject><subject>Cell Proliferation</subject><subject>Chromosome 3</subject><subject>Competition</subject><subject>Cytoplasm</subject><subject>Diagnosis</subject><subject>Differentiation</subject><subject>Diseases</subject><subject>Fibroblasts</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Growth</subject><subject>Health aspects</subject><subject>High altitude</subject><subject>Livestock</subject><subject>Lnc-MEG8</subject><subject>Localization</subject><subject>Medical examination</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>MiR-22-3p</subject><subject>Muscle Development - genetics</subject><subject>Muscle diseases</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myoblasts</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - metabolism</subject><subject>Myotubes</subject><subject>Proteins</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RTL1</subject><subject>Skeletal muscle</subject><subject>Skeletal myoblasts</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Transcriptomes</subject><subject>Transfection</subject><subject>Yak</subject><subject>Yaks</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkFv1DAQhSMEoqXwBzigSFzgkNZjO4l9QlVVyopFSEs5W449Tr0k8TZOqu6_x-2W0kXIB1vj773RjF6WvQVyDCCqkwhUVLwglBcAhIli-yw7BF5DQaHiz5-8D7JXMa4JgVrQ8mV2wGRFuKDiMPu6HEzx7fxC5CO2c6cnjPlW_8r7bWg6HafceudwxGHyevJhyG-8zqcrzHu_Kigt2OZkdbmEXN_6-Dp74XQX8c3DfZT9_Hx-efalWH6_WJydLgvDazkVoibQULRcGqzRGGfBCGCCV401VEpAiw3nBJwkxlhppeHMSlJSZ7Wzgh1li52vDXqtNqPv9bhVQXt1Xwhjq_Q4edOhKhmpJDSaWym4SI5UO43W1jUrjSsxeX3aeW3mpkdr0qCj7vZM938Gf6XacKMAKkIqUSaHDw8OY7ieMU6q99Fg1-kBwxwVA8ZqxkTFEvr-H3Qd5nFIu0oUp1QCl-Qv1eo0gR9cSI3Nnak6FSBIlVrLRB3_h0rHYu9NGND5VN8TfNwTJGbC26nVc4xq8WO1z9Ida8YQ44jucSFA1F321C57KmVP3WdPbZPo3dNVPkr-hI39BpmP0aM</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>Ma, Xiaoming</creator><creator>La, Yongfu</creator><creator>Wang, Tong</creator><creator>Huang, Chun</creator><creator>Feng, Fen</creator><creator>Guo, Xian</creator><creator>Bao, Pengjia</creator><creator>Wu, Xiaoyun</creator><creator>Chu, Min</creator><creator>Liang, Chunnian</creator><creator>Yan, Ping</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241127</creationdate><title>Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis</title><author>Ma, Xiaoming ; La, Yongfu ; Wang, Tong ; Huang, Chun ; Feng, Fen ; Guo, Xian ; Bao, Pengjia ; Wu, Xiaoyun ; Chu, Min ; Liang, Chunnian ; Yan, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-8701b2ed49ce7eccfd1c813846bdc2991edeb4401f90ccd9d9c43d9052fdafd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animal husbandry</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Bos grunniens</topic><topic>Care and treatment</topic><topic>Cattle</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell growth</topic><topic>Cell Proliferation</topic><topic>Chromosome 3</topic><topic>Competition</topic><topic>Cytoplasm</topic><topic>Diagnosis</topic><topic>Differentiation</topic><topic>Diseases</topic><topic>Fibroblasts</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Growth</topic><topic>Health aspects</topic><topic>High altitude</topic><topic>Livestock</topic><topic>Lnc-MEG8</topic><topic>Localization</topic><topic>Medical examination</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>MiR-22-3p</topic><topic>Muscle Development - genetics</topic><topic>Muscle diseases</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myoblasts</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - metabolism</topic><topic>Myotubes</topic><topic>Proteins</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RTL1</topic><topic>Skeletal muscle</topic><topic>Skeletal myoblasts</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Transcriptomes</topic><topic>Transfection</topic><topic>Yak</topic><topic>Yaks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xiaoming</creatorcontrib><creatorcontrib>La, Yongfu</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Huang, Chun</creatorcontrib><creatorcontrib>Feng, Fen</creatorcontrib><creatorcontrib>Guo, Xian</creatorcontrib><creatorcontrib>Bao, Pengjia</creatorcontrib><creatorcontrib>Wu, Xiaoyun</creatorcontrib><creatorcontrib>Chu, Min</creatorcontrib><creatorcontrib>Liang, Chunnian</creatorcontrib><creatorcontrib>Yan, Ping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xiaoming</au><au>La, Yongfu</au><au>Wang, Tong</au><au>Huang, Chun</au><au>Feng, Fen</au><au>Guo, Xian</au><au>Bao, Pengjia</au><au>Wu, Xiaoyun</au><au>Chu, Min</au><au>Liang, Chunnian</au><au>Yan, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2024-11-27</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>1146</spage><epage>15</epage><pages>1146-15</pages><artnum>1146</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>The yak (Bos grunniens) is essential to the livelihoods of Tibetan people on the Qinghai-Tibet Plateau; however, its growth and productivity are constrained by the region's harsh climate and high altitude. Yak skeletal muscle myoblasts, which have evolved to thrive under these challenging conditions, offer a valuable model for investigating muscle development. In this study, we performed transcriptome profiling of yak longissimus dorsi muscle at different growth stages, identifying a key long non-coding RNA, LncRNA-XR_314844 (Lnc-MEG8), with a potential role in muscle development. We developed a novel technique to isolate high-quality yak myoblasts, enabling detailed analysis of Lnc-MEG8. Our results indicated that Lnc-MEG8's subcellular localization varies during muscle cell growth: it is found in both the nucleus and cytoplasm during proliferation but shifts mainly to the cytoplasm during differentiation. Functional experiments showed that Lnc-MEG8 promotes cell proliferation and inhibits differentiation, while its silencing had the opposite effect. Further analysis revealed that both Lnc-MEG8 and the gene RTL1 share miR-22-3p as a common target. Dual-luciferase assays confirmed miR-22-3p directly targets both Lnc-MEG8 and RTL1 mRNA. Co-transfection of Lnc-MEG8 and a miR-22-3p mimic restored RTL1 expression, highlighting Lnc-MEG8's regulatory role. Lnc-MEG8 also counteracts miR-22-3p's suppression of key muscle genes such as MyF5 and MyoG, facilitating myotube formation. These findings demonstrate that the Lnc-MEG8-miR-22-3p-RTL1 axis plays a crucial role in yak muscle development, providing insights that could advance muscle tissue engineering and enhance yak meat quality.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39604828</pmid><doi>10.1186/s12864-024-11038-y</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2024-11, Vol.25 (1), p.1146-15, Article 1146
issn 1471-2164
1471-2164
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_530691ba4d98481f92afaedd7735cf5e
source PubMed (Medline); Publicly Available Content Database
subjects Animal husbandry
Animals
Atrophy
Bos grunniens
Care and treatment
Cattle
Cell differentiation
Cell Differentiation - genetics
Cell growth
Cell Proliferation
Chromosome 3
Competition
Cytoplasm
Diagnosis
Differentiation
Diseases
Fibroblasts
Gene Expression Profiling
Genes
Genetic aspects
Growth
Health aspects
High altitude
Livestock
Lnc-MEG8
Localization
Medical examination
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
MiR-22-3p
Muscle Development - genetics
Muscle diseases
Muscle, Skeletal - cytology
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Myoblasts
Myoblasts - cytology
Myoblasts - metabolism
Myotubes
Proteins
RNA
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RTL1
Skeletal muscle
Skeletal myoblasts
Stem cells
Tissue engineering
Transcriptomes
Transfection
Yak
Yaks
title Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lnc-MEG8%20regulates%20yak%20myoblast%20differentiation%20via%20the%20miR-22-3p/RTL1%20axis&rft.jtitle=BMC%20genomics&rft.au=Ma,%20Xiaoming&rft.date=2024-11-27&rft.volume=25&rft.issue=1&rft.spage=1146&rft.epage=15&rft.pages=1146-15&rft.artnum=1146&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-024-11038-y&rft_dat=%3Cgale_doaj_%3EA818061169%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-8701b2ed49ce7eccfd1c813846bdc2991edeb4401f90ccd9d9c43d9052fdafd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142291490&rft_id=info:pmid/39604828&rft_galeid=A818061169&rfr_iscdi=true