Loading…
Proteomic and bioinformatics analysis of human saliva for the dental-risk assessment
Background: Dental caries disease is a dynamic process with a multi-factorial etiology. It is manifested by demineralization of enamel followed by damage spreading into the tooth inner structure. Successful early diagnosis could identify caries-risk and improve dental screening, providing a baseline...
Saved in:
Published in: | Open life sciences 2017-10, Vol.12 (1), p.248-265 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: Dental caries disease is a dynamic process with a multi-factorial etiology. It is manifested by demineralization of enamel followed by damage spreading into the tooth inner structure. Successful early diagnosis could identify caries-risk and improve dental screening, providing a baseline for evaluating personalized dental treatment and prevention strategies. Methodology: Salivary proteome of the whole unstimulated saliva (WUS) samples was assessed in caries-free and caries-susceptible individuals of older adolescent age with permanent dentition using a nano-HPLC and MALDI-TOF/TOF mass spectrometry. Results: 554 proteins in the caries-free and 695 proteins in the caries-susceptible group were identified. Assessment using bioinformatics tools and Gene Ontology (GO) term enrichment analysis revealed qualitative differences between these two proteomes. Members of the caries-susceptible group exhibited a branch of cytokine binding gene products responsible for the regulation of immune and inflammatory responses to infections. Inspection of molecular functions and biological processes of caries-susceptible saliva samples revealed significant categories predominantly related to the activity of proteolytic peptidases, and the regulation of metabolic and catabolic processes of carbohydrates. Conclusions: Proteomic analysis of the whole saliva revealed information about potential risk factors associated with the development of caries-susceptibility and provides a better understanding of tooth protection mechanisms. |
---|---|
ISSN: | 2391-5412 2391-5412 |
DOI: | 10.1515/biol-2017-0030 |