Loading…

Machine learning approach for the classification of corn seed using hybrid features

Seed purity is an important indicator of crop seed quality. On the other side, corn is an important crop of the modern agricultural industry with more than 40% grain Worldwide production. The purpose of this study was to examine the feasibility of a machine learning (ML) approach for classifying dif...

Full description

Saved in:
Bibliographic Details
Published in:International journal of food properties 2020-01, Vol.23 (1), p.1110-1124
Main Authors: Ali, Aqib, Qadri, Salman, Mashwani, Wali Khan, Brahim Belhaouari, Samir, Naeem, Samreen, Rafique, Sidra, Jamal, Farrukh, Chesneau, Christophe, Anam, Sania
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3
cites cdi_FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3
container_end_page 1124
container_issue 1
container_start_page 1110
container_title International journal of food properties
container_volume 23
creator Ali, Aqib
Qadri, Salman
Mashwani, Wali Khan
Brahim Belhaouari, Samir
Naeem, Samreen
Rafique, Sidra
Jamal, Farrukh
Chesneau, Christophe
Anam, Sania
description Seed purity is an important indicator of crop seed quality. On the other side, corn is an important crop of the modern agricultural industry with more than 40% grain Worldwide production. The purpose of this study was to examine the feasibility of a machine learning (ML) approach for classifying different types of corn seeds. The seed digital images (DI) of six corn varieties were Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, and ICI 339. This was achieved through a digital camera in a natural environment without a complicated laboratory system. The acquired DI dataset converted to a hybrid feature dataset, which is the combination of histogram, texture, and spectral features. For each corn seed image, a total of fifty-five hybrid-features was acquired on every non-overlapping region of interest (ROI), sizes (75 × 75), (100 × 100), (125 × 125) and (150 × 150). The nine optimized features have been acquired by employing the correlation-based feature selection (CFS) technique with the Best First search algorithm. To build the classification models, Random forest (RF), BayesNet (BN), LogitBoost (LB), and Multilayer Perceptron (MLP) were employed using optimized multi-feature using (10-fold) cross-validation approach. A comparative analysis of four ML classifiers, the MLP performed outstanding classification accuracy (98.93%), on ROIs size (150 × 150). The accuracy values by MLP on six corn seed verities named Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, ICI- 339 was 99.8%, 97%, 98.5%, 98.6%, 99.9%, and 99.4%, respectively.
doi_str_mv 10.1080/10942912.2020.1778724
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_532b1f4b00e441ce93742f73c9a13893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_532b1f4b00e441ce93742f73c9a13893</doaj_id><sourcerecordid>2475281884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3</originalsourceid><addsrcrecordid>eNp9UU1PGzEUXCGQSoGfUMlSzxv8GXtvraIWkII4AGfrrf1MHC3r1N6oyr_HIYEjp_c0mpn3MU3zg9EZo4ZeM9pJ3jE-45RXSGujuTxpzpkSvOXCzE9rXzntnvSt-V7KmlJmBKPnzeM9uFUckQwIeYzjC4HNJqcKkpAymVZI3AClxBAdTDGNJAXiUh5JQfRkW_aS1a7P0ZOAMG0zlsvmLMBQ8OpYL5rnv3-eFrft8uHmbvF72Tqp2NQqpoJngdPeKc25UZ0JAN6DQ-ECOM651F4GRgNKrzs1hwBz1L1E6IF7cdHcHXx9grXd5PgKeWcTRPsOpPxiIU_RDWjrJ3oWZE8pSskcdkJLHrRwHTBhOlG9fh686vH_tlgmu07bPNb1bd1CccOMkZWlDiyXUykZw-dURu0-C_uRhd1nYY9ZVN2vgy6O9auv8D_lwdsJdkPKIcPoYrHia4s3aXWQlg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475281884</pqid></control><display><type>article</type><title>Machine learning approach for the classification of corn seed using hybrid features</title><source>Taylor &amp; Francis_OA刊</source><creator>Ali, Aqib ; Qadri, Salman ; Mashwani, Wali Khan ; Brahim Belhaouari, Samir ; Naeem, Samreen ; Rafique, Sidra ; Jamal, Farrukh ; Chesneau, Christophe ; Anam, Sania</creator><creatorcontrib>Ali, Aqib ; Qadri, Salman ; Mashwani, Wali Khan ; Brahim Belhaouari, Samir ; Naeem, Samreen ; Rafique, Sidra ; Jamal, Farrukh ; Chesneau, Christophe ; Anam, Sania</creatorcontrib><description>Seed purity is an important indicator of crop seed quality. On the other side, corn is an important crop of the modern agricultural industry with more than 40% grain Worldwide production. The purpose of this study was to examine the feasibility of a machine learning (ML) approach for classifying different types of corn seeds. The seed digital images (DI) of six corn varieties were Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, and ICI 339. This was achieved through a digital camera in a natural environment without a complicated laboratory system. The acquired DI dataset converted to a hybrid feature dataset, which is the combination of histogram, texture, and spectral features. For each corn seed image, a total of fifty-five hybrid-features was acquired on every non-overlapping region of interest (ROI), sizes (75 × 75), (100 × 100), (125 × 125) and (150 × 150). The nine optimized features have been acquired by employing the correlation-based feature selection (CFS) technique with the Best First search algorithm. To build the classification models, Random forest (RF), BayesNet (BN), LogitBoost (LB), and Multilayer Perceptron (MLP) were employed using optimized multi-feature using (10-fold) cross-validation approach. A comparative analysis of four ML classifiers, the MLP performed outstanding classification accuracy (98.93%), on ROIs size (150 × 150). The accuracy values by MLP on six corn seed verities named Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, ICI- 339 was 99.8%, 97%, 98.5%, 98.6%, 99.9%, and 99.4%, respectively.</description><identifier>ISSN: 1094-2912</identifier><identifier>EISSN: 1532-2386</identifier><identifier>DOI: 10.1080/10942912.2020.1778724</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Classification ; Comparative analysis ; Corn seeds ; correlation-based feature selection ; Learning algorithms ; Machine learning ; multilayer perceptron</subject><ispartof>International journal of food properties, 2020-01, Vol.23 (1), p.1110-1124</ispartof><rights>Published with license by Taylor &amp; Francis Group, LLC. © 2020 Aqib Ali, Salman Qadri, Wali Khan Mashwani, Samir Brahim Belhaouari, Samreen Naeem, Sidra Rafique, Farrukh Jamal, Christophe Chesneau and Sania Anam 2020</rights><rights>Published with license by Taylor &amp; Francis Group, LLC. 2020. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3</citedby><cites>FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3</cites><orcidid>0000-0002-5463-4581 ; 0000-0002-5081-741X ; 0000-0001-6192-9890 ; 0000-0002-1522-9292 ; 0000-0001-9374-791X ; 0000-0003-0529-8187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10942912.2020.1778724$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10942912.2020.1778724$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Ali, Aqib</creatorcontrib><creatorcontrib>Qadri, Salman</creatorcontrib><creatorcontrib>Mashwani, Wali Khan</creatorcontrib><creatorcontrib>Brahim Belhaouari, Samir</creatorcontrib><creatorcontrib>Naeem, Samreen</creatorcontrib><creatorcontrib>Rafique, Sidra</creatorcontrib><creatorcontrib>Jamal, Farrukh</creatorcontrib><creatorcontrib>Chesneau, Christophe</creatorcontrib><creatorcontrib>Anam, Sania</creatorcontrib><title>Machine learning approach for the classification of corn seed using hybrid features</title><title>International journal of food properties</title><description>Seed purity is an important indicator of crop seed quality. On the other side, corn is an important crop of the modern agricultural industry with more than 40% grain Worldwide production. The purpose of this study was to examine the feasibility of a machine learning (ML) approach for classifying different types of corn seeds. The seed digital images (DI) of six corn varieties were Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, and ICI 339. This was achieved through a digital camera in a natural environment without a complicated laboratory system. The acquired DI dataset converted to a hybrid feature dataset, which is the combination of histogram, texture, and spectral features. For each corn seed image, a total of fifty-five hybrid-features was acquired on every non-overlapping region of interest (ROI), sizes (75 × 75), (100 × 100), (125 × 125) and (150 × 150). The nine optimized features have been acquired by employing the correlation-based feature selection (CFS) technique with the Best First search algorithm. To build the classification models, Random forest (RF), BayesNet (BN), LogitBoost (LB), and Multilayer Perceptron (MLP) were employed using optimized multi-feature using (10-fold) cross-validation approach. A comparative analysis of four ML classifiers, the MLP performed outstanding classification accuracy (98.93%), on ROIs size (150 × 150). The accuracy values by MLP on six corn seed verities named Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, ICI- 339 was 99.8%, 97%, 98.5%, 98.6%, 99.9%, and 99.4%, respectively.</description><subject>Classification</subject><subject>Comparative analysis</subject><subject>Corn seeds</subject><subject>correlation-based feature selection</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>multilayer perceptron</subject><issn>1094-2912</issn><issn>1532-2386</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1PGzEUXCGQSoGfUMlSzxv8GXtvraIWkII4AGfrrf1MHC3r1N6oyr_HIYEjp_c0mpn3MU3zg9EZo4ZeM9pJ3jE-45RXSGujuTxpzpkSvOXCzE9rXzntnvSt-V7KmlJmBKPnzeM9uFUckQwIeYzjC4HNJqcKkpAymVZI3AClxBAdTDGNJAXiUh5JQfRkW_aS1a7P0ZOAMG0zlsvmLMBQ8OpYL5rnv3-eFrft8uHmbvF72Tqp2NQqpoJngdPeKc25UZ0JAN6DQ-ECOM651F4GRgNKrzs1hwBz1L1E6IF7cdHcHXx9grXd5PgKeWcTRPsOpPxiIU_RDWjrJ3oWZE8pSskcdkJLHrRwHTBhOlG9fh686vH_tlgmu07bPNb1bd1CccOMkZWlDiyXUykZw-dURu0-C_uRhd1nYY9ZVN2vgy6O9auv8D_lwdsJdkPKIcPoYrHia4s3aXWQlg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ali, Aqib</creator><creator>Qadri, Salman</creator><creator>Mashwani, Wali Khan</creator><creator>Brahim Belhaouari, Samir</creator><creator>Naeem, Samreen</creator><creator>Rafique, Sidra</creator><creator>Jamal, Farrukh</creator><creator>Chesneau, Christophe</creator><creator>Anam, Sania</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5463-4581</orcidid><orcidid>https://orcid.org/0000-0002-5081-741X</orcidid><orcidid>https://orcid.org/0000-0001-6192-9890</orcidid><orcidid>https://orcid.org/0000-0002-1522-9292</orcidid><orcidid>https://orcid.org/0000-0001-9374-791X</orcidid><orcidid>https://orcid.org/0000-0003-0529-8187</orcidid></search><sort><creationdate>20200101</creationdate><title>Machine learning approach for the classification of corn seed using hybrid features</title><author>Ali, Aqib ; Qadri, Salman ; Mashwani, Wali Khan ; Brahim Belhaouari, Samir ; Naeem, Samreen ; Rafique, Sidra ; Jamal, Farrukh ; Chesneau, Christophe ; Anam, Sania</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Comparative analysis</topic><topic>Corn seeds</topic><topic>correlation-based feature selection</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>multilayer perceptron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Aqib</creatorcontrib><creatorcontrib>Qadri, Salman</creatorcontrib><creatorcontrib>Mashwani, Wali Khan</creatorcontrib><creatorcontrib>Brahim Belhaouari, Samir</creatorcontrib><creatorcontrib>Naeem, Samreen</creatorcontrib><creatorcontrib>Rafique, Sidra</creatorcontrib><creatorcontrib>Jamal, Farrukh</creatorcontrib><creatorcontrib>Chesneau, Christophe</creatorcontrib><creatorcontrib>Anam, Sania</creatorcontrib><collection>Taylor &amp; Francis_OA刊</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of food properties</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Aqib</au><au>Qadri, Salman</au><au>Mashwani, Wali Khan</au><au>Brahim Belhaouari, Samir</au><au>Naeem, Samreen</au><au>Rafique, Sidra</au><au>Jamal, Farrukh</au><au>Chesneau, Christophe</au><au>Anam, Sania</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning approach for the classification of corn seed using hybrid features</atitle><jtitle>International journal of food properties</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>23</volume><issue>1</issue><spage>1110</spage><epage>1124</epage><pages>1110-1124</pages><issn>1094-2912</issn><eissn>1532-2386</eissn><abstract>Seed purity is an important indicator of crop seed quality. On the other side, corn is an important crop of the modern agricultural industry with more than 40% grain Worldwide production. The purpose of this study was to examine the feasibility of a machine learning (ML) approach for classifying different types of corn seeds. The seed digital images (DI) of six corn varieties were Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, and ICI 339. This was achieved through a digital camera in a natural environment without a complicated laboratory system. The acquired DI dataset converted to a hybrid feature dataset, which is the combination of histogram, texture, and spectral features. For each corn seed image, a total of fifty-five hybrid-features was acquired on every non-overlapping region of interest (ROI), sizes (75 × 75), (100 × 100), (125 × 125) and (150 × 150). The nine optimized features have been acquired by employing the correlation-based feature selection (CFS) technique with the Best First search algorithm. To build the classification models, Random forest (RF), BayesNet (BN), LogitBoost (LB), and Multilayer Perceptron (MLP) were employed using optimized multi-feature using (10-fold) cross-validation approach. A comparative analysis of four ML classifiers, the MLP performed outstanding classification accuracy (98.93%), on ROIs size (150 × 150). The accuracy values by MLP on six corn seed verities named Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, ICI- 339 was 99.8%, 97%, 98.5%, 98.6%, 99.9%, and 99.4%, respectively.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/10942912.2020.1778724</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5463-4581</orcidid><orcidid>https://orcid.org/0000-0002-5081-741X</orcidid><orcidid>https://orcid.org/0000-0001-6192-9890</orcidid><orcidid>https://orcid.org/0000-0002-1522-9292</orcidid><orcidid>https://orcid.org/0000-0001-9374-791X</orcidid><orcidid>https://orcid.org/0000-0003-0529-8187</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-2912
ispartof International journal of food properties, 2020-01, Vol.23 (1), p.1110-1124
issn 1094-2912
1532-2386
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_532b1f4b00e441ce93742f73c9a13893
source Taylor & Francis_OA刊
subjects Classification
Comparative analysis
Corn seeds
correlation-based feature selection
Learning algorithms
Machine learning
multilayer perceptron
title Machine learning approach for the classification of corn seed using hybrid features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20approach%20for%20the%20classification%20of%20corn%20seed%20using%20hybrid%20features&rft.jtitle=International%20journal%20of%20food%20properties&rft.au=Ali,%20Aqib&rft.date=2020-01-01&rft.volume=23&rft.issue=1&rft.spage=1110&rft.epage=1124&rft.pages=1110-1124&rft.issn=1094-2912&rft.eissn=1532-2386&rft_id=info:doi/10.1080/10942912.2020.1778724&rft_dat=%3Cproquest_doaj_%3E2475281884%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475281884&rft_id=info:pmid/&rfr_iscdi=true