Loading…
Machine learning approach for the classification of corn seed using hybrid features
Seed purity is an important indicator of crop seed quality. On the other side, corn is an important crop of the modern agricultural industry with more than 40% grain Worldwide production. The purpose of this study was to examine the feasibility of a machine learning (ML) approach for classifying dif...
Saved in:
Published in: | International journal of food properties 2020-01, Vol.23 (1), p.1110-1124 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3 |
container_end_page | 1124 |
container_issue | 1 |
container_start_page | 1110 |
container_title | International journal of food properties |
container_volume | 23 |
creator | Ali, Aqib Qadri, Salman Mashwani, Wali Khan Brahim Belhaouari, Samir Naeem, Samreen Rafique, Sidra Jamal, Farrukh Chesneau, Christophe Anam, Sania |
description | Seed purity is an important indicator of crop seed quality. On the other side, corn is an important crop of the modern agricultural industry with more than 40% grain Worldwide production. The purpose of this study was to examine the feasibility of a machine learning (ML) approach for classifying different types of corn seeds. The seed digital images (DI) of six corn varieties were Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, and ICI 339. This was achieved through a digital camera in a natural environment without a complicated laboratory system. The acquired DI dataset converted to a hybrid feature dataset, which is the combination of histogram, texture, and spectral features. For each corn seed image, a total of fifty-five hybrid-features was acquired on every non-overlapping region of interest (ROI), sizes (75 × 75), (100 × 100), (125 × 125) and (150 × 150). The nine optimized features have been acquired by employing the correlation-based feature selection (CFS) technique with the Best First search algorithm. To build the classification models, Random forest (RF), BayesNet (BN), LogitBoost (LB), and Multilayer Perceptron (MLP) were employed using optimized multi-feature using (10-fold) cross-validation approach. A comparative analysis of four ML classifiers, the MLP performed outstanding classification accuracy (98.93%), on ROIs size (150 × 150). The accuracy values by MLP on six corn seed verities named Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, ICI- 339 was 99.8%, 97%, 98.5%, 98.6%, 99.9%, and 99.4%, respectively. |
doi_str_mv | 10.1080/10942912.2020.1778724 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_532b1f4b00e441ce93742f73c9a13893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_532b1f4b00e441ce93742f73c9a13893</doaj_id><sourcerecordid>2475281884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3</originalsourceid><addsrcrecordid>eNp9UU1PGzEUXCGQSoGfUMlSzxv8GXtvraIWkII4AGfrrf1MHC3r1N6oyr_HIYEjp_c0mpn3MU3zg9EZo4ZeM9pJ3jE-45RXSGujuTxpzpkSvOXCzE9rXzntnvSt-V7KmlJmBKPnzeM9uFUckQwIeYzjC4HNJqcKkpAymVZI3AClxBAdTDGNJAXiUh5JQfRkW_aS1a7P0ZOAMG0zlsvmLMBQ8OpYL5rnv3-eFrft8uHmbvF72Tqp2NQqpoJngdPeKc25UZ0JAN6DQ-ECOM651F4GRgNKrzs1hwBz1L1E6IF7cdHcHXx9grXd5PgKeWcTRPsOpPxiIU_RDWjrJ3oWZE8pSskcdkJLHrRwHTBhOlG9fh686vH_tlgmu07bPNb1bd1CccOMkZWlDiyXUykZw-dURu0-C_uRhd1nYY9ZVN2vgy6O9auv8D_lwdsJdkPKIcPoYrHia4s3aXWQlg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475281884</pqid></control><display><type>article</type><title>Machine learning approach for the classification of corn seed using hybrid features</title><source>Taylor & Francis_OA刊</source><creator>Ali, Aqib ; Qadri, Salman ; Mashwani, Wali Khan ; Brahim Belhaouari, Samir ; Naeem, Samreen ; Rafique, Sidra ; Jamal, Farrukh ; Chesneau, Christophe ; Anam, Sania</creator><creatorcontrib>Ali, Aqib ; Qadri, Salman ; Mashwani, Wali Khan ; Brahim Belhaouari, Samir ; Naeem, Samreen ; Rafique, Sidra ; Jamal, Farrukh ; Chesneau, Christophe ; Anam, Sania</creatorcontrib><description>Seed purity is an important indicator of crop seed quality. On the other side, corn is an important crop of the modern agricultural industry with more than 40% grain Worldwide production. The purpose of this study was to examine the feasibility of a machine learning (ML) approach for classifying different types of corn seeds. The seed digital images (DI) of six corn varieties were Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, and ICI 339. This was achieved through a digital camera in a natural environment without a complicated laboratory system. The acquired DI dataset converted to a hybrid feature dataset, which is the combination of histogram, texture, and spectral features. For each corn seed image, a total of fifty-five hybrid-features was acquired on every non-overlapping region of interest (ROI), sizes (75 × 75), (100 × 100), (125 × 125) and (150 × 150). The nine optimized features have been acquired by employing the correlation-based feature selection (CFS) technique with the Best First search algorithm. To build the classification models, Random forest (RF), BayesNet (BN), LogitBoost (LB), and Multilayer Perceptron (MLP) were employed using optimized multi-feature using (10-fold) cross-validation approach. A comparative analysis of four ML classifiers, the MLP performed outstanding classification accuracy (98.93%), on ROIs size (150 × 150). The accuracy values by MLP on six corn seed verities named Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, ICI- 339 was 99.8%, 97%, 98.5%, 98.6%, 99.9%, and 99.4%, respectively.</description><identifier>ISSN: 1094-2912</identifier><identifier>EISSN: 1532-2386</identifier><identifier>DOI: 10.1080/10942912.2020.1778724</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Classification ; Comparative analysis ; Corn seeds ; correlation-based feature selection ; Learning algorithms ; Machine learning ; multilayer perceptron</subject><ispartof>International journal of food properties, 2020-01, Vol.23 (1), p.1110-1124</ispartof><rights>Published with license by Taylor & Francis Group, LLC. © 2020 Aqib Ali, Salman Qadri, Wali Khan Mashwani, Samir Brahim Belhaouari, Samreen Naeem, Sidra Rafique, Farrukh Jamal, Christophe Chesneau and Sania Anam 2020</rights><rights>Published with license by Taylor & Francis Group, LLC. 2020. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3</citedby><cites>FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3</cites><orcidid>0000-0002-5463-4581 ; 0000-0002-5081-741X ; 0000-0001-6192-9890 ; 0000-0002-1522-9292 ; 0000-0001-9374-791X ; 0000-0003-0529-8187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10942912.2020.1778724$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10942912.2020.1778724$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Ali, Aqib</creatorcontrib><creatorcontrib>Qadri, Salman</creatorcontrib><creatorcontrib>Mashwani, Wali Khan</creatorcontrib><creatorcontrib>Brahim Belhaouari, Samir</creatorcontrib><creatorcontrib>Naeem, Samreen</creatorcontrib><creatorcontrib>Rafique, Sidra</creatorcontrib><creatorcontrib>Jamal, Farrukh</creatorcontrib><creatorcontrib>Chesneau, Christophe</creatorcontrib><creatorcontrib>Anam, Sania</creatorcontrib><title>Machine learning approach for the classification of corn seed using hybrid features</title><title>International journal of food properties</title><description>Seed purity is an important indicator of crop seed quality. On the other side, corn is an important crop of the modern agricultural industry with more than 40% grain Worldwide production. The purpose of this study was to examine the feasibility of a machine learning (ML) approach for classifying different types of corn seeds. The seed digital images (DI) of six corn varieties were Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, and ICI 339. This was achieved through a digital camera in a natural environment without a complicated laboratory system. The acquired DI dataset converted to a hybrid feature dataset, which is the combination of histogram, texture, and spectral features. For each corn seed image, a total of fifty-five hybrid-features was acquired on every non-overlapping region of interest (ROI), sizes (75 × 75), (100 × 100), (125 × 125) and (150 × 150). The nine optimized features have been acquired by employing the correlation-based feature selection (CFS) technique with the Best First search algorithm. To build the classification models, Random forest (RF), BayesNet (BN), LogitBoost (LB), and Multilayer Perceptron (MLP) were employed using optimized multi-feature using (10-fold) cross-validation approach. A comparative analysis of four ML classifiers, the MLP performed outstanding classification accuracy (98.93%), on ROIs size (150 × 150). The accuracy values by MLP on six corn seed verities named Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, ICI- 339 was 99.8%, 97%, 98.5%, 98.6%, 99.9%, and 99.4%, respectively.</description><subject>Classification</subject><subject>Comparative analysis</subject><subject>Corn seeds</subject><subject>correlation-based feature selection</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>multilayer perceptron</subject><issn>1094-2912</issn><issn>1532-2386</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1PGzEUXCGQSoGfUMlSzxv8GXtvraIWkII4AGfrrf1MHC3r1N6oyr_HIYEjp_c0mpn3MU3zg9EZo4ZeM9pJ3jE-45RXSGujuTxpzpkSvOXCzE9rXzntnvSt-V7KmlJmBKPnzeM9uFUckQwIeYzjC4HNJqcKkpAymVZI3AClxBAdTDGNJAXiUh5JQfRkW_aS1a7P0ZOAMG0zlsvmLMBQ8OpYL5rnv3-eFrft8uHmbvF72Tqp2NQqpoJngdPeKc25UZ0JAN6DQ-ECOM651F4GRgNKrzs1hwBz1L1E6IF7cdHcHXx9grXd5PgKeWcTRPsOpPxiIU_RDWjrJ3oWZE8pSskcdkJLHrRwHTBhOlG9fh686vH_tlgmu07bPNb1bd1CccOMkZWlDiyXUykZw-dURu0-C_uRhd1nYY9ZVN2vgy6O9auv8D_lwdsJdkPKIcPoYrHia4s3aXWQlg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ali, Aqib</creator><creator>Qadri, Salman</creator><creator>Mashwani, Wali Khan</creator><creator>Brahim Belhaouari, Samir</creator><creator>Naeem, Samreen</creator><creator>Rafique, Sidra</creator><creator>Jamal, Farrukh</creator><creator>Chesneau, Christophe</creator><creator>Anam, Sania</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5463-4581</orcidid><orcidid>https://orcid.org/0000-0002-5081-741X</orcidid><orcidid>https://orcid.org/0000-0001-6192-9890</orcidid><orcidid>https://orcid.org/0000-0002-1522-9292</orcidid><orcidid>https://orcid.org/0000-0001-9374-791X</orcidid><orcidid>https://orcid.org/0000-0003-0529-8187</orcidid></search><sort><creationdate>20200101</creationdate><title>Machine learning approach for the classification of corn seed using hybrid features</title><author>Ali, Aqib ; Qadri, Salman ; Mashwani, Wali Khan ; Brahim Belhaouari, Samir ; Naeem, Samreen ; Rafique, Sidra ; Jamal, Farrukh ; Chesneau, Christophe ; Anam, Sania</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Comparative analysis</topic><topic>Corn seeds</topic><topic>correlation-based feature selection</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>multilayer perceptron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Aqib</creatorcontrib><creatorcontrib>Qadri, Salman</creatorcontrib><creatorcontrib>Mashwani, Wali Khan</creatorcontrib><creatorcontrib>Brahim Belhaouari, Samir</creatorcontrib><creatorcontrib>Naeem, Samreen</creatorcontrib><creatorcontrib>Rafique, Sidra</creatorcontrib><creatorcontrib>Jamal, Farrukh</creatorcontrib><creatorcontrib>Chesneau, Christophe</creatorcontrib><creatorcontrib>Anam, Sania</creatorcontrib><collection>Taylor & Francis_OA刊</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of food properties</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Aqib</au><au>Qadri, Salman</au><au>Mashwani, Wali Khan</au><au>Brahim Belhaouari, Samir</au><au>Naeem, Samreen</au><au>Rafique, Sidra</au><au>Jamal, Farrukh</au><au>Chesneau, Christophe</au><au>Anam, Sania</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning approach for the classification of corn seed using hybrid features</atitle><jtitle>International journal of food properties</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>23</volume><issue>1</issue><spage>1110</spage><epage>1124</epage><pages>1110-1124</pages><issn>1094-2912</issn><eissn>1532-2386</eissn><abstract>Seed purity is an important indicator of crop seed quality. On the other side, corn is an important crop of the modern agricultural industry with more than 40% grain Worldwide production. The purpose of this study was to examine the feasibility of a machine learning (ML) approach for classifying different types of corn seeds. The seed digital images (DI) of six corn varieties were Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, and ICI 339. This was achieved through a digital camera in a natural environment without a complicated laboratory system. The acquired DI dataset converted to a hybrid feature dataset, which is the combination of histogram, texture, and spectral features. For each corn seed image, a total of fifty-five hybrid-features was acquired on every non-overlapping region of interest (ROI), sizes (75 × 75), (100 × 100), (125 × 125) and (150 × 150). The nine optimized features have been acquired by employing the correlation-based feature selection (CFS) technique with the Best First search algorithm. To build the classification models, Random forest (RF), BayesNet (BN), LogitBoost (LB), and Multilayer Perceptron (MLP) were employed using optimized multi-feature using (10-fold) cross-validation approach. A comparative analysis of four ML classifiers, the MLP performed outstanding classification accuracy (98.93%), on ROIs size (150 × 150). The accuracy values by MLP on six corn seed verities named Desi Makkai, Sygenta ST-6142, Kashmiri Makkai, Pioneer P-1429, Neelam Makkai, ICI- 339 was 99.8%, 97%, 98.5%, 98.6%, 99.9%, and 99.4%, respectively.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/10942912.2020.1778724</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5463-4581</orcidid><orcidid>https://orcid.org/0000-0002-5081-741X</orcidid><orcidid>https://orcid.org/0000-0001-6192-9890</orcidid><orcidid>https://orcid.org/0000-0002-1522-9292</orcidid><orcidid>https://orcid.org/0000-0001-9374-791X</orcidid><orcidid>https://orcid.org/0000-0003-0529-8187</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-2912 |
ispartof | International journal of food properties, 2020-01, Vol.23 (1), p.1110-1124 |
issn | 1094-2912 1532-2386 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_532b1f4b00e441ce93742f73c9a13893 |
source | Taylor & Francis_OA刊 |
subjects | Classification Comparative analysis Corn seeds correlation-based feature selection Learning algorithms Machine learning multilayer perceptron |
title | Machine learning approach for the classification of corn seed using hybrid features |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20approach%20for%20the%20classification%20of%20corn%20seed%20using%20hybrid%20features&rft.jtitle=International%20journal%20of%20food%20properties&rft.au=Ali,%20Aqib&rft.date=2020-01-01&rft.volume=23&rft.issue=1&rft.spage=1110&rft.epage=1124&rft.pages=1110-1124&rft.issn=1094-2912&rft.eissn=1532-2386&rft_id=info:doi/10.1080/10942912.2020.1778724&rft_dat=%3Cproquest_doaj_%3E2475281884%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-515fd1f20bc57228598faaddace3cfac22247d4f10fe4d7956afa6e7b4eaba2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475281884&rft_id=info:pmid/&rfr_iscdi=true |