Loading…

Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast

Traditional ways of validating satellite-derived sea surface temperature (SST) and sea surface salinity (SSS) products by comparing with buoy measurements, do not allow for evaluating the impact of mesoscale-to-submesoscale variability. We present the validation of remotely sensed SST and SSS data a...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2019, Vol.11 (17), p.1964
Main Authors: Vazquez-Cuervo, Jorge, Gomez-Valdes, Jose, Bouali, Marouan, Miranda, Luis, Van der Stocken, Tom, Tang, Wenqing, Gentemann, Chelle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-ac805cb18ec780419cca680c447dd0232d052b4ffd46f60f2f662baefc3227d43
cites cdi_FETCH-LOGICAL-c361t-ac805cb18ec780419cca680c447dd0232d052b4ffd46f60f2f662baefc3227d43
container_end_page
container_issue 17
container_start_page 1964
container_title Remote sensing (Basel, Switzerland)
container_volume 11
creator Vazquez-Cuervo, Jorge
Gomez-Valdes, Jose
Bouali, Marouan
Miranda, Luis
Van der Stocken, Tom
Tang, Wenqing
Gentemann, Chelle
description Traditional ways of validating satellite-derived sea surface temperature (SST) and sea surface salinity (SSS) products by comparing with buoy measurements, do not allow for evaluating the impact of mesoscale-to-submesoscale variability. We present the validation of remotely sensed SST and SSS data against the unmanned surface vehicle (USV)—called Saildrone—measurements from the 60 day 2018 Baja California campaign. More specifically, biases and root mean square differences (RMSDs) were calculated between USV-derived SST and SSS values, and six satellite-derived SST (MUR, OSTIA, CMC, K10, REMSS, and DMI) and three SSS (JPLSMAP, RSS40, RSS70) products. Biases between the USV SST and OSTIA/CMC/DMI were approximately zero, while MUR showed a bias of 0.3 °C. The OSTIA showed the smallest RMSD of 0.39 °C, while DMI had the largest RMSD of 0.5 °C. An RMSD of 0.4 °C between Saildrone SST and the satellite-derived products could be explained by the diurnal and sub-daily variability in USV SST, which currently cannot be resolved by remote sensing measurements. SSS showed fresh biases of 0.1 PSU for JPLSMAP and 0.2 PSU and 0.3 PSU for RMSS40 and RSS70 respectively. SST and SSS showed peaks in coherence at 100 km, most likely associated with the variability of the California Current System.
doi_str_mv 10.3390/rs11171964
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_532e12e37b9148358f2c504a05f6ea63</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_532e12e37b9148358f2c504a05f6ea63</doaj_id><sourcerecordid>2304053352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-ac805cb18ec780419cca680c447dd0232d052b4ffd46f60f2f662baefc3227d43</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhhdRUGov_oKAN2E1X5vdPWr9KggeWr2GaTLRlHVTk1Toyb_uasWPuczwvi_PDExRHDF6KkRLz2JijNWsVXKnOOC05qXkLd_9M-8X45SWdCghWEvlQfH-kHz_RGbgOxtDj4nkQB6h8xYyDnLGrvMZy0uM_g0tmSGQ2To6MJ9u53ufNwT6_8YcX1YYIa8jEujCwM_PSCZD3IXYezi7gCWQSYCUD4s9B13C8XcfFQ_XV_PJbXl3fzOdnN-VRiiWSzANrcyCNWjqhkrWGgOqoUbK2lrKBbe04gvpnJXKKeq4U4ovAJ0RnNdWilEx3XJtgKVeRf8CcaMDeP0lhPikIWZvOtSV4Mg4inrRMtmIqnHcVFQCrZxCUGJgHW9Zqxhe15iyXoZ17IfzNRdU0kqIig-pk23KxJBSRPezlVH9-S_9-y_xAUuqh2I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2304053352</pqid></control><display><type>article</type><title>Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast</title><source>Publicly Available Content Database</source><creator>Vazquez-Cuervo, Jorge ; Gomez-Valdes, Jose ; Bouali, Marouan ; Miranda, Luis ; Van der Stocken, Tom ; Tang, Wenqing ; Gentemann, Chelle</creator><creatorcontrib>Vazquez-Cuervo, Jorge ; Gomez-Valdes, Jose ; Bouali, Marouan ; Miranda, Luis ; Van der Stocken, Tom ; Tang, Wenqing ; Gentemann, Chelle</creatorcontrib><description>Traditional ways of validating satellite-derived sea surface temperature (SST) and sea surface salinity (SSS) products by comparing with buoy measurements, do not allow for evaluating the impact of mesoscale-to-submesoscale variability. We present the validation of remotely sensed SST and SSS data against the unmanned surface vehicle (USV)—called Saildrone—measurements from the 60 day 2018 Baja California campaign. More specifically, biases and root mean square differences (RMSDs) were calculated between USV-derived SST and SSS values, and six satellite-derived SST (MUR, OSTIA, CMC, K10, REMSS, and DMI) and three SSS (JPLSMAP, RSS40, RSS70) products. Biases between the USV SST and OSTIA/CMC/DMI were approximately zero, while MUR showed a bias of 0.3 °C. The OSTIA showed the smallest RMSD of 0.39 °C, while DMI had the largest RMSD of 0.5 °C. An RMSD of 0.4 °C between Saildrone SST and the satellite-derived products could be explained by the diurnal and sub-daily variability in USV SST, which currently cannot be resolved by remote sensing measurements. SSS showed fresh biases of 0.1 PSU for JPLSMAP and 0.2 PSU and 0.3 PSU for RMSS40 and RSS70 respectively. SST and SSS showed peaks in coherence at 100 km, most likely associated with the variability of the California Current System.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs11171964</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Coasts ; Datasets ; Diurnal ; MODIS ; Oceanography ; Remote sensing ; Remote sensing systems ; saildrone ; Salinity ; Salinity effects ; Satellites ; sea surface salinity ; Sea surface temperature ; SMAP ; Standard deviation ; Studies ; Surface vehicles ; Unmanned vehicles ; validation</subject><ispartof>Remote sensing (Basel, Switzerland), 2019, Vol.11 (17), p.1964</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-ac805cb18ec780419cca680c447dd0232d052b4ffd46f60f2f662baefc3227d43</citedby><cites>FETCH-LOGICAL-c361t-ac805cb18ec780419cca680c447dd0232d052b4ffd46f60f2f662baefc3227d43</cites><orcidid>0000-0002-8528-7826 ; 0000-0002-1820-9123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2304053352/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2304053352?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,25732,27902,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Vazquez-Cuervo, Jorge</creatorcontrib><creatorcontrib>Gomez-Valdes, Jose</creatorcontrib><creatorcontrib>Bouali, Marouan</creatorcontrib><creatorcontrib>Miranda, Luis</creatorcontrib><creatorcontrib>Van der Stocken, Tom</creatorcontrib><creatorcontrib>Tang, Wenqing</creatorcontrib><creatorcontrib>Gentemann, Chelle</creatorcontrib><title>Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast</title><title>Remote sensing (Basel, Switzerland)</title><description>Traditional ways of validating satellite-derived sea surface temperature (SST) and sea surface salinity (SSS) products by comparing with buoy measurements, do not allow for evaluating the impact of mesoscale-to-submesoscale variability. We present the validation of remotely sensed SST and SSS data against the unmanned surface vehicle (USV)—called Saildrone—measurements from the 60 day 2018 Baja California campaign. More specifically, biases and root mean square differences (RMSDs) were calculated between USV-derived SST and SSS values, and six satellite-derived SST (MUR, OSTIA, CMC, K10, REMSS, and DMI) and three SSS (JPLSMAP, RSS40, RSS70) products. Biases between the USV SST and OSTIA/CMC/DMI were approximately zero, while MUR showed a bias of 0.3 °C. The OSTIA showed the smallest RMSD of 0.39 °C, while DMI had the largest RMSD of 0.5 °C. An RMSD of 0.4 °C between Saildrone SST and the satellite-derived products could be explained by the diurnal and sub-daily variability in USV SST, which currently cannot be resolved by remote sensing measurements. SSS showed fresh biases of 0.1 PSU for JPLSMAP and 0.2 PSU and 0.3 PSU for RMSS40 and RSS70 respectively. SST and SSS showed peaks in coherence at 100 km, most likely associated with the variability of the California Current System.</description><subject>Coasts</subject><subject>Datasets</subject><subject>Diurnal</subject><subject>MODIS</subject><subject>Oceanography</subject><subject>Remote sensing</subject><subject>Remote sensing systems</subject><subject>saildrone</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Satellites</subject><subject>sea surface salinity</subject><subject>Sea surface temperature</subject><subject>SMAP</subject><subject>Standard deviation</subject><subject>Studies</subject><subject>Surface vehicles</subject><subject>Unmanned vehicles</subject><subject>validation</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1LAzEQhhdRUGov_oKAN2E1X5vdPWr9KggeWr2GaTLRlHVTk1Toyb_uasWPuczwvi_PDExRHDF6KkRLz2JijNWsVXKnOOC05qXkLd_9M-8X45SWdCghWEvlQfH-kHz_RGbgOxtDj4nkQB6h8xYyDnLGrvMZy0uM_g0tmSGQ2To6MJ9u53ufNwT6_8YcX1YYIa8jEujCwM_PSCZD3IXYezi7gCWQSYCUD4s9B13C8XcfFQ_XV_PJbXl3fzOdnN-VRiiWSzANrcyCNWjqhkrWGgOqoUbK2lrKBbe04gvpnJXKKeq4U4ovAJ0RnNdWilEx3XJtgKVeRf8CcaMDeP0lhPikIWZvOtSV4Mg4inrRMtmIqnHcVFQCrZxCUGJgHW9Zqxhe15iyXoZ17IfzNRdU0kqIig-pk23KxJBSRPezlVH9-S_9-y_xAUuqh2I</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Vazquez-Cuervo, Jorge</creator><creator>Gomez-Valdes, Jose</creator><creator>Bouali, Marouan</creator><creator>Miranda, Luis</creator><creator>Van der Stocken, Tom</creator><creator>Tang, Wenqing</creator><creator>Gentemann, Chelle</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8528-7826</orcidid><orcidid>https://orcid.org/0000-0002-1820-9123</orcidid></search><sort><creationdate>2019</creationdate><title>Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast</title><author>Vazquez-Cuervo, Jorge ; Gomez-Valdes, Jose ; Bouali, Marouan ; Miranda, Luis ; Van der Stocken, Tom ; Tang, Wenqing ; Gentemann, Chelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-ac805cb18ec780419cca680c447dd0232d052b4ffd46f60f2f662baefc3227d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coasts</topic><topic>Datasets</topic><topic>Diurnal</topic><topic>MODIS</topic><topic>Oceanography</topic><topic>Remote sensing</topic><topic>Remote sensing systems</topic><topic>saildrone</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Satellites</topic><topic>sea surface salinity</topic><topic>Sea surface temperature</topic><topic>SMAP</topic><topic>Standard deviation</topic><topic>Studies</topic><topic>Surface vehicles</topic><topic>Unmanned vehicles</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vazquez-Cuervo, Jorge</creatorcontrib><creatorcontrib>Gomez-Valdes, Jose</creatorcontrib><creatorcontrib>Bouali, Marouan</creatorcontrib><creatorcontrib>Miranda, Luis</creatorcontrib><creatorcontrib>Van der Stocken, Tom</creatorcontrib><creatorcontrib>Tang, Wenqing</creatorcontrib><creatorcontrib>Gentemann, Chelle</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vazquez-Cuervo, Jorge</au><au>Gomez-Valdes, Jose</au><au>Bouali, Marouan</au><au>Miranda, Luis</au><au>Van der Stocken, Tom</au><au>Tang, Wenqing</au><au>Gentemann, Chelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2019</date><risdate>2019</risdate><volume>11</volume><issue>17</issue><spage>1964</spage><pages>1964-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Traditional ways of validating satellite-derived sea surface temperature (SST) and sea surface salinity (SSS) products by comparing with buoy measurements, do not allow for evaluating the impact of mesoscale-to-submesoscale variability. We present the validation of remotely sensed SST and SSS data against the unmanned surface vehicle (USV)—called Saildrone—measurements from the 60 day 2018 Baja California campaign. More specifically, biases and root mean square differences (RMSDs) were calculated between USV-derived SST and SSS values, and six satellite-derived SST (MUR, OSTIA, CMC, K10, REMSS, and DMI) and three SSS (JPLSMAP, RSS40, RSS70) products. Biases between the USV SST and OSTIA/CMC/DMI were approximately zero, while MUR showed a bias of 0.3 °C. The OSTIA showed the smallest RMSD of 0.39 °C, while DMI had the largest RMSD of 0.5 °C. An RMSD of 0.4 °C between Saildrone SST and the satellite-derived products could be explained by the diurnal and sub-daily variability in USV SST, which currently cannot be resolved by remote sensing measurements. SSS showed fresh biases of 0.1 PSU for JPLSMAP and 0.2 PSU and 0.3 PSU for RMSS40 and RSS70 respectively. SST and SSS showed peaks in coherence at 100 km, most likely associated with the variability of the California Current System.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs11171964</doi><orcidid>https://orcid.org/0000-0002-8528-7826</orcidid><orcidid>https://orcid.org/0000-0002-1820-9123</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2019, Vol.11 (17), p.1964
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_532e12e37b9148358f2c504a05f6ea63
source Publicly Available Content Database
subjects Coasts
Datasets
Diurnal
MODIS
Oceanography
Remote sensing
Remote sensing systems
saildrone
Salinity
Salinity effects
Satellites
sea surface salinity
Sea surface temperature
SMAP
Standard deviation
Studies
Surface vehicles
Unmanned vehicles
validation
title Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A34%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Saildrones%20to%20Validate%20Satellite-Derived%20Sea%20Surface%20Salinity%20and%20Sea%20Surface%20Temperature%20along%20the%20California/Baja%20Coast&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Vazquez-Cuervo,%20Jorge&rft.date=2019&rft.volume=11&rft.issue=17&rft.spage=1964&rft.pages=1964-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs11171964&rft_dat=%3Cproquest_doaj_%3E2304053352%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-ac805cb18ec780419cca680c447dd0232d052b4ffd46f60f2f662baefc3227d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2304053352&rft_id=info:pmid/&rfr_iscdi=true