Loading…

Computational Network Inference for Bacterial Interactomics

Since the large-scale experimental characterization of protein-protein interactions (PPIs) is not possible for all species, several computational PPI prediction methods have been developed that harness existing data from other species. While PPI network prediction has been extensively used in eukary...

Full description

Saved in:
Bibliographic Details
Published in:mSystems 2022-04, Vol.7 (2), p.e0145621-e0145621
Main Authors: James, Katherine, Muñoz-Muñoz, Jose
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a504t-722e8531a0ae166ea329c985b7d2c4f3148e8a58440054ee268e36343e829fc63
cites cdi_FETCH-LOGICAL-a504t-722e8531a0ae166ea329c985b7d2c4f3148e8a58440054ee268e36343e829fc63
container_end_page e0145621
container_issue 2
container_start_page e0145621
container_title mSystems
container_volume 7
creator James, Katherine
Muñoz-Muñoz, Jose
description Since the large-scale experimental characterization of protein-protein interactions (PPIs) is not possible for all species, several computational PPI prediction methods have been developed that harness existing data from other species. While PPI network prediction has been extensively used in eukaryotes, microbial network inference has lagged behind. However, bacterial interactomes can be built using the same principles and techniques; in fact, several methods are better suited to bacterial genomes. These predicted networks allow systems-level analyses in species that lack experimental interaction data. This review describes the current network inference and analysis techniques and summarizes the use of computationally-predicted microbial interactomes to date.
doi_str_mv 10.1128/msystems.01456-21
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_534be604ab4f49b890c6e236889c529c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_534be604ab4f49b890c6e236889c529c</doaj_id><sourcerecordid>2645469731</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-722e8531a0ae166ea329c985b7d2c4f3148e8a58440054ee268e36343e829fc63</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpD-CC9sgly_gztpCQYMXHShVc4GxNvJOSJYkX2wH13-N226q9IB8845n3eWW9jL3ksOZc2DdTvsqFprwGrrRpBH_CToVsXaOhbZ8-qE_Yec57AOBGtly45-xE6noA3Cl7u4nTYSlYhjjjuPpK5W9Mv1bbuadEc6BVH9PqA4ZCaajz7VyL2sVpCPkFe9bjmOn89j5jPz59_L750lx8-7zdvL9oUIMqTSsEWS05AhI3hlAKF5zVXbsTQfWSK0sWtVUKQCsiYSxJI5UkK1wfjDxj2yN3F3HvD2mYMF35iIO_eYjp0mMqQxjJa6k6MqCwU71ynXUQDAlprHVBV9vKendkHZZuol2guSQcH0EfT-bhp7-Mf7wDBbaVFfD6FpDi74Vy8dOQA40jzhSX7IVRWhnXSl5X-XE1pJhzov7ehoO_ztDfZehvMvTiWrM-ajBPwu_jkmos-b-CVw8_dG9xF7H8Bxc5qKA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645469731</pqid></control><display><type>article</type><title>Computational Network Inference for Bacterial Interactomics</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><source>American Society for Microbiology Journals</source><creator>James, Katherine ; Muñoz-Muñoz, Jose</creator><contributor>Gilbert, Jack A ; Gilbert, Jack A.</contributor><creatorcontrib>James, Katherine ; Muñoz-Muñoz, Jose ; Gilbert, Jack A ; Gilbert, Jack A.</creatorcontrib><description>Since the large-scale experimental characterization of protein-protein interactions (PPIs) is not possible for all species, several computational PPI prediction methods have been developed that harness existing data from other species. While PPI network prediction has been extensively used in eukaryotes, microbial network inference has lagged behind. However, bacterial interactomes can be built using the same principles and techniques; in fact, several methods are better suited to bacterial genomes. These predicted networks allow systems-level analyses in species that lack experimental interaction data. This review describes the current network inference and analysis techniques and summarizes the use of computationally-predicted microbial interactomes to date.</description><identifier>ISSN: 2379-5077</identifier><identifier>EISSN: 2379-5077</identifier><identifier>DOI: 10.1128/msystems.01456-21</identifier><identifier>PMID: 35353009</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Bacteria ; cellular network analysis ; Computational Biology ; data integration ; interactome ; interologs ; Minireview ; systems biology</subject><ispartof>mSystems, 2022-04, Vol.7 (2), p.e0145621-e0145621</ispartof><rights>Copyright © 2022 James and Muñoz-Muñoz.</rights><rights>Copyright © 2022 James and Muñoz-Muñoz. 2022 James and Muñoz-Muñoz.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-722e8531a0ae166ea329c985b7d2c4f3148e8a58440054ee268e36343e829fc63</citedby><cites>FETCH-LOGICAL-a504t-722e8531a0ae166ea329c985b7d2c4f3148e8a58440054ee268e36343e829fc63</cites><orcidid>0000-0003-0167-8393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.asm.org/doi/pdf/10.1128/msystems.01456-21$$EPDF$$P50$$Gasm2$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.asm.org/doi/full/10.1128/msystems.01456-21$$EHTML$$P50$$Gasm2$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,27901,27902,36990,52726,52727,52728,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35353009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gilbert, Jack A</contributor><contributor>Gilbert, Jack A.</contributor><creatorcontrib>James, Katherine</creatorcontrib><creatorcontrib>Muñoz-Muñoz, Jose</creatorcontrib><title>Computational Network Inference for Bacterial Interactomics</title><title>mSystems</title><addtitle>mSystems</addtitle><addtitle>mSystems</addtitle><description>Since the large-scale experimental characterization of protein-protein interactions (PPIs) is not possible for all species, several computational PPI prediction methods have been developed that harness existing data from other species. While PPI network prediction has been extensively used in eukaryotes, microbial network inference has lagged behind. However, bacterial interactomes can be built using the same principles and techniques; in fact, several methods are better suited to bacterial genomes. These predicted networks allow systems-level analyses in species that lack experimental interaction data. This review describes the current network inference and analysis techniques and summarizes the use of computationally-predicted microbial interactomes to date.</description><subject>Bacteria</subject><subject>cellular network analysis</subject><subject>Computational Biology</subject><subject>data integration</subject><subject>interactome</subject><subject>interologs</subject><subject>Minireview</subject><subject>systems biology</subject><issn>2379-5077</issn><issn>2379-5077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EolXpD-CC9sgly_gztpCQYMXHShVc4GxNvJOSJYkX2wH13-N226q9IB8845n3eWW9jL3ksOZc2DdTvsqFprwGrrRpBH_CToVsXaOhbZ8-qE_Yec57AOBGtly45-xE6noA3Cl7u4nTYSlYhjjjuPpK5W9Mv1bbuadEc6BVH9PqA4ZCaajz7VyL2sVpCPkFe9bjmOn89j5jPz59_L750lx8-7zdvL9oUIMqTSsEWS05AhI3hlAKF5zVXbsTQfWSK0sWtVUKQCsiYSxJI5UkK1wfjDxj2yN3F3HvD2mYMF35iIO_eYjp0mMqQxjJa6k6MqCwU71ynXUQDAlprHVBV9vKendkHZZuol2guSQcH0EfT-bhp7-Mf7wDBbaVFfD6FpDi74Vy8dOQA40jzhSX7IVRWhnXSl5X-XE1pJhzov7ehoO_ztDfZehvMvTiWrM-ajBPwu_jkmos-b-CVw8_dG9xF7H8Bxc5qKA</recordid><startdate>20220426</startdate><enddate>20220426</enddate><creator>James, Katherine</creator><creator>Muñoz-Muñoz, Jose</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0167-8393</orcidid></search><sort><creationdate>20220426</creationdate><title>Computational Network Inference for Bacterial Interactomics</title><author>James, Katherine ; Muñoz-Muñoz, Jose</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-722e8531a0ae166ea329c985b7d2c4f3148e8a58440054ee268e36343e829fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacteria</topic><topic>cellular network analysis</topic><topic>Computational Biology</topic><topic>data integration</topic><topic>interactome</topic><topic>interologs</topic><topic>Minireview</topic><topic>systems biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>James, Katherine</creatorcontrib><creatorcontrib>Muñoz-Muñoz, Jose</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>mSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>James, Katherine</au><au>Muñoz-Muñoz, Jose</au><au>Gilbert, Jack A</au><au>Gilbert, Jack A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Network Inference for Bacterial Interactomics</atitle><jtitle>mSystems</jtitle><stitle>mSystems</stitle><addtitle>mSystems</addtitle><date>2022-04-26</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>e0145621</spage><epage>e0145621</epage><pages>e0145621-e0145621</pages><issn>2379-5077</issn><eissn>2379-5077</eissn><abstract>Since the large-scale experimental characterization of protein-protein interactions (PPIs) is not possible for all species, several computational PPI prediction methods have been developed that harness existing data from other species. While PPI network prediction has been extensively used in eukaryotes, microbial network inference has lagged behind. However, bacterial interactomes can be built using the same principles and techniques; in fact, several methods are better suited to bacterial genomes. These predicted networks allow systems-level analyses in species that lack experimental interaction data. This review describes the current network inference and analysis techniques and summarizes the use of computationally-predicted microbial interactomes to date.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>35353009</pmid><doi>10.1128/msystems.01456-21</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0167-8393</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-5077
ispartof mSystems, 2022-04, Vol.7 (2), p.e0145621-e0145621
issn 2379-5077
2379-5077
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_534be604ab4f49b890c6e236889c529c
source PMC (PubMed Central); Publicly Available Content (ProQuest); American Society for Microbiology Journals
subjects Bacteria
cellular network analysis
Computational Biology
data integration
interactome
interologs
Minireview
systems biology
title Computational Network Inference for Bacterial Interactomics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Network%20Inference%20for%20Bacterial%20Interactomics&rft.jtitle=mSystems&rft.au=James,%20Katherine&rft.date=2022-04-26&rft.volume=7&rft.issue=2&rft.spage=e0145621&rft.epage=e0145621&rft.pages=e0145621-e0145621&rft.issn=2379-5077&rft.eissn=2379-5077&rft_id=info:doi/10.1128/msystems.01456-21&rft_dat=%3Cproquest_doaj_%3E2645469731%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a504t-722e8531a0ae166ea329c985b7d2c4f3148e8a58440054ee268e36343e829fc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645469731&rft_id=info:pmid/35353009&rfr_iscdi=true