Loading…

pH-Activated Dissolvable Polymeric Coatings to Reduce Biofouling on Electrochemical Sensors

Implantable electrochemical sensors that enable the real-time detection of significant biomarkers offer huge potential for the enhancement and personalisation of therapies; however, biofouling is a key challenge encountered by any implantable system. This is particularly an issue immediately after i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of functional biomaterials 2023-06, Vol.14 (6), p.329
Main Authors: Uçar, Ahmet, González-Fernández, Eva, Staderini, Matteo, Murray, Alan F, Mount, Andrew R, Bradley, Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-9b28393cec69f1ccfe03128aad84a09094322030a438f833d764d06842cc4bdf3
cites cdi_FETCH-LOGICAL-c510t-9b28393cec69f1ccfe03128aad84a09094322030a438f833d764d06842cc4bdf3
container_end_page
container_issue 6
container_start_page 329
container_title Journal of functional biomaterials
container_volume 14
creator Uçar, Ahmet
González-Fernández, Eva
Staderini, Matteo
Murray, Alan F
Mount, Andrew R
Bradley, Mark
description Implantable electrochemical sensors that enable the real-time detection of significant biomarkers offer huge potential for the enhancement and personalisation of therapies; however, biofouling is a key challenge encountered by any implantable system. This is particularly an issue immediately after implantation, when the foreign body response and associated biofouling processes are at their most active in passivating a foreign object. Here, we present the development of a sensor protection and activation strategy against biofouling, based on coatings consisting of a pH-triggered, dissolvable polymer, that covered a functionalised electrode surface. We demonstrate that reproducible delayed sensor activation can be achieved, and that the length of this delay can be controlled by the optimisation of coating thickness, homogeneity and density through tuning of the coating method and temperature. Comparative evaluation of the polymer-coated and uncoated probe-modified electrodes in biological media revealed significant improvements in their anti-biofouling characteristics, demonstrating that this offers a promising approach to the design of enhanced sensing devices.
doi_str_mv 10.3390/jfb14060329
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_536701e99981410d988c9ef28bc66d9e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758379722</galeid><doaj_id>oai_doaj_org_article_536701e99981410d988c9ef28bc66d9e</doaj_id><sourcerecordid>A758379722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-9b28393cec69f1ccfe03128aad84a09094322030a438f833d764d06842cc4bdf3</originalsourceid><addsrcrecordid>eNptkstr3DAQxk1paUKSU-_F0GNxotfa0qlst2kTCDT0cepByKPRRottbSV7If99tdk8dqHSQeLTNz_NDFMU7yg551yRi5VrqSA14Uy9Ko4ZaVQllOSv9-5HxVlKK5JXTSSj4m1xxBteN0zx4-LP-qqaw-g3ZkRbfvEphW5j2g7L29Dd9xg9lItgRj8sUzmG8gfaCbD87IMLU5fVMgzlZYcwxgB32HswXfkThxRiOi3eONMlPHs8T4rfXy9_La6qm-_frhfzmwpmlIyVapnkigNCrRwFcEg4ZdIYK4UhiijBGSOcGMGlk5zbphaW1FIwANFax0-K6x3XBrPS6-h7E-91MF4_CCEutYmjhw71LNdNKCqlJBWUWCUlKHRMtlDXVmFmfdqx1lPbowUcxmi6A-jhy-Dv9DJsNCVMyUzNhA-PhBj-TphGvQpTHHIDNJNs-28zEy-upclp-cGFTIPeJ9DzZiZ5oxrGsuv8P6687bbTYUDns34Q8HEXADGkFNE9Z06J3g6M3huY7H6_X-yz92k8-D_ierme</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829814754</pqid></control><display><type>article</type><title>pH-Activated Dissolvable Polymeric Coatings to Reduce Biofouling on Electrochemical Sensors</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Uçar, Ahmet ; González-Fernández, Eva ; Staderini, Matteo ; Murray, Alan F ; Mount, Andrew R ; Bradley, Mark</creator><creatorcontrib>Uçar, Ahmet ; González-Fernández, Eva ; Staderini, Matteo ; Murray, Alan F ; Mount, Andrew R ; Bradley, Mark</creatorcontrib><description>Implantable electrochemical sensors that enable the real-time detection of significant biomarkers offer huge potential for the enhancement and personalisation of therapies; however, biofouling is a key challenge encountered by any implantable system. This is particularly an issue immediately after implantation, when the foreign body response and associated biofouling processes are at their most active in passivating a foreign object. Here, we present the development of a sensor protection and activation strategy against biofouling, based on coatings consisting of a pH-triggered, dissolvable polymer, that covered a functionalised electrode surface. We demonstrate that reproducible delayed sensor activation can be achieved, and that the length of this delay can be controlled by the optimisation of coating thickness, homogeneity and density through tuning of the coating method and temperature. Comparative evaluation of the polymer-coated and uncoated probe-modified electrodes in biological media revealed significant improvements in their anti-biofouling characteristics, demonstrating that this offers a promising approach to the design of enhanced sensing devices.</description><identifier>ISSN: 2079-4983</identifier><identifier>EISSN: 2079-4983</identifier><identifier>DOI: 10.3390/jfb14060329</identifier><identifier>PMID: 37367293</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adsorption ; Biofouling ; Biomarkers ; Chemical sensors ; Coatings ; dissolvable packaging ; Dopamine ; electrochemical sensing ; Electrochemistry ; Electrodes ; Gold ; Homogeneity ; Hydration ; Hydrogen-ion concentration ; implantable devices ; Implants, Artificial ; Medical equipment ; Methylene blue ; Optimization ; pH-activation ; Polyethylene glycol ; Polymer coatings ; Polymers ; Potassium ; Prosthesis ; Proteins ; Sensors ; Voltammetry</subject><ispartof>Journal of functional biomaterials, 2023-06, Vol.14 (6), p.329</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-9b28393cec69f1ccfe03128aad84a09094322030a438f833d764d06842cc4bdf3</citedby><cites>FETCH-LOGICAL-c510t-9b28393cec69f1ccfe03128aad84a09094322030a438f833d764d06842cc4bdf3</cites><orcidid>0000-0001-7696-7726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2829814754/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2829814754?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37367293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uçar, Ahmet</creatorcontrib><creatorcontrib>González-Fernández, Eva</creatorcontrib><creatorcontrib>Staderini, Matteo</creatorcontrib><creatorcontrib>Murray, Alan F</creatorcontrib><creatorcontrib>Mount, Andrew R</creatorcontrib><creatorcontrib>Bradley, Mark</creatorcontrib><title>pH-Activated Dissolvable Polymeric Coatings to Reduce Biofouling on Electrochemical Sensors</title><title>Journal of functional biomaterials</title><addtitle>J Funct Biomater</addtitle><description>Implantable electrochemical sensors that enable the real-time detection of significant biomarkers offer huge potential for the enhancement and personalisation of therapies; however, biofouling is a key challenge encountered by any implantable system. This is particularly an issue immediately after implantation, when the foreign body response and associated biofouling processes are at their most active in passivating a foreign object. Here, we present the development of a sensor protection and activation strategy against biofouling, based on coatings consisting of a pH-triggered, dissolvable polymer, that covered a functionalised electrode surface. We demonstrate that reproducible delayed sensor activation can be achieved, and that the length of this delay can be controlled by the optimisation of coating thickness, homogeneity and density through tuning of the coating method and temperature. Comparative evaluation of the polymer-coated and uncoated probe-modified electrodes in biological media revealed significant improvements in their anti-biofouling characteristics, demonstrating that this offers a promising approach to the design of enhanced sensing devices.</description><subject>Adsorption</subject><subject>Biofouling</subject><subject>Biomarkers</subject><subject>Chemical sensors</subject><subject>Coatings</subject><subject>dissolvable packaging</subject><subject>Dopamine</subject><subject>electrochemical sensing</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Gold</subject><subject>Homogeneity</subject><subject>Hydration</subject><subject>Hydrogen-ion concentration</subject><subject>implantable devices</subject><subject>Implants, Artificial</subject><subject>Medical equipment</subject><subject>Methylene blue</subject><subject>Optimization</subject><subject>pH-activation</subject><subject>Polyethylene glycol</subject><subject>Polymer coatings</subject><subject>Polymers</subject><subject>Potassium</subject><subject>Prosthesis</subject><subject>Proteins</subject><subject>Sensors</subject><subject>Voltammetry</subject><issn>2079-4983</issn><issn>2079-4983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkstr3DAQxk1paUKSU-_F0GNxotfa0qlst2kTCDT0cepByKPRRottbSV7If99tdk8dqHSQeLTNz_NDFMU7yg551yRi5VrqSA14Uy9Ko4ZaVQllOSv9-5HxVlKK5JXTSSj4m1xxBteN0zx4-LP-qqaw-g3ZkRbfvEphW5j2g7L29Dd9xg9lItgRj8sUzmG8gfaCbD87IMLU5fVMgzlZYcwxgB32HswXfkThxRiOi3eONMlPHs8T4rfXy9_La6qm-_frhfzmwpmlIyVapnkigNCrRwFcEg4ZdIYK4UhiijBGSOcGMGlk5zbphaW1FIwANFax0-K6x3XBrPS6-h7E-91MF4_CCEutYmjhw71LNdNKCqlJBWUWCUlKHRMtlDXVmFmfdqx1lPbowUcxmi6A-jhy-Dv9DJsNCVMyUzNhA-PhBj-TphGvQpTHHIDNJNs-28zEy-upclp-cGFTIPeJ9DzZiZ5oxrGsuv8P6687bbTYUDns34Q8HEXADGkFNE9Z06J3g6M3huY7H6_X-yz92k8-D_ierme</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Uçar, Ahmet</creator><creator>González-Fernández, Eva</creator><creator>Staderini, Matteo</creator><creator>Murray, Alan F</creator><creator>Mount, Andrew R</creator><creator>Bradley, Mark</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7696-7726</orcidid></search><sort><creationdate>20230601</creationdate><title>pH-Activated Dissolvable Polymeric Coatings to Reduce Biofouling on Electrochemical Sensors</title><author>Uçar, Ahmet ; González-Fernández, Eva ; Staderini, Matteo ; Murray, Alan F ; Mount, Andrew R ; Bradley, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-9b28393cec69f1ccfe03128aad84a09094322030a438f833d764d06842cc4bdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Biofouling</topic><topic>Biomarkers</topic><topic>Chemical sensors</topic><topic>Coatings</topic><topic>dissolvable packaging</topic><topic>Dopamine</topic><topic>electrochemical sensing</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Gold</topic><topic>Homogeneity</topic><topic>Hydration</topic><topic>Hydrogen-ion concentration</topic><topic>implantable devices</topic><topic>Implants, Artificial</topic><topic>Medical equipment</topic><topic>Methylene blue</topic><topic>Optimization</topic><topic>pH-activation</topic><topic>Polyethylene glycol</topic><topic>Polymer coatings</topic><topic>Polymers</topic><topic>Potassium</topic><topic>Prosthesis</topic><topic>Proteins</topic><topic>Sensors</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uçar, Ahmet</creatorcontrib><creatorcontrib>González-Fernández, Eva</creatorcontrib><creatorcontrib>Staderini, Matteo</creatorcontrib><creatorcontrib>Murray, Alan F</creatorcontrib><creatorcontrib>Mount, Andrew R</creatorcontrib><creatorcontrib>Bradley, Mark</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of functional biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uçar, Ahmet</au><au>González-Fernández, Eva</au><au>Staderini, Matteo</au><au>Murray, Alan F</au><au>Mount, Andrew R</au><au>Bradley, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pH-Activated Dissolvable Polymeric Coatings to Reduce Biofouling on Electrochemical Sensors</atitle><jtitle>Journal of functional biomaterials</jtitle><addtitle>J Funct Biomater</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>14</volume><issue>6</issue><spage>329</spage><pages>329-</pages><issn>2079-4983</issn><eissn>2079-4983</eissn><abstract>Implantable electrochemical sensors that enable the real-time detection of significant biomarkers offer huge potential for the enhancement and personalisation of therapies; however, biofouling is a key challenge encountered by any implantable system. This is particularly an issue immediately after implantation, when the foreign body response and associated biofouling processes are at their most active in passivating a foreign object. Here, we present the development of a sensor protection and activation strategy against biofouling, based on coatings consisting of a pH-triggered, dissolvable polymer, that covered a functionalised electrode surface. We demonstrate that reproducible delayed sensor activation can be achieved, and that the length of this delay can be controlled by the optimisation of coating thickness, homogeneity and density through tuning of the coating method and temperature. Comparative evaluation of the polymer-coated and uncoated probe-modified electrodes in biological media revealed significant improvements in their anti-biofouling characteristics, demonstrating that this offers a promising approach to the design of enhanced sensing devices.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37367293</pmid><doi>10.3390/jfb14060329</doi><orcidid>https://orcid.org/0000-0001-7696-7726</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4983
ispartof Journal of functional biomaterials, 2023-06, Vol.14 (6), p.329
issn 2079-4983
2079-4983
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_536701e99981410d988c9ef28bc66d9e
source Open Access: PubMed Central; Publicly Available Content Database
subjects Adsorption
Biofouling
Biomarkers
Chemical sensors
Coatings
dissolvable packaging
Dopamine
electrochemical sensing
Electrochemistry
Electrodes
Gold
Homogeneity
Hydration
Hydrogen-ion concentration
implantable devices
Implants, Artificial
Medical equipment
Methylene blue
Optimization
pH-activation
Polyethylene glycol
Polymer coatings
Polymers
Potassium
Prosthesis
Proteins
Sensors
Voltammetry
title pH-Activated Dissolvable Polymeric Coatings to Reduce Biofouling on Electrochemical Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pH-Activated%20Dissolvable%20Polymeric%20Coatings%20to%20Reduce%20Biofouling%20on%20Electrochemical%20Sensors&rft.jtitle=Journal%20of%20functional%20biomaterials&rft.au=U%C3%A7ar,%20Ahmet&rft.date=2023-06-01&rft.volume=14&rft.issue=6&rft.spage=329&rft.pages=329-&rft.issn=2079-4983&rft.eissn=2079-4983&rft_id=info:doi/10.3390/jfb14060329&rft_dat=%3Cgale_doaj_%3EA758379722%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-9b28393cec69f1ccfe03128aad84a09094322030a438f833d764d06842cc4bdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829814754&rft_id=info:pmid/37367293&rft_galeid=A758379722&rfr_iscdi=true