Loading…

Effect of thermal degradation on rheological properties of polymeric materials

The aim of this paper is to monitor the melt volume index of thermoplastic materials and other rheological properties such as shear rate and viscosity. The aim is to compare and assess whether several times ground and subsequently re-melted samples of pure polymer granulate will have the same or sim...

Full description

Saved in:
Bibliographic Details
Published in:MATEC web of conferences 2019, Vol.299, p.6001
Main Authors: Dobránsky, Jozef, Doboš, Zigmund
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this paper is to monitor the melt volume index of thermoplastic materials and other rheological properties such as shear rate and viscosity. The aim is to compare and assess whether several times ground and subsequently re-melted samples of pure polymer granulate will have the same or similar rheology properties and whether adjustment of the injection molding machine will be required or willneed to reduce or increase production times. Thermo Scientific with HAAKE Meltflow MT software was used to determine the melt flow rate index (MVR) of thermoplastic materials. Based on the melt flow rate (MVR), shear rate and viscosity evaluation, it has been found that, although the selected materials have undergone multiple changes in the rheology of the polymeric materials, there is no problem in the molding process, and MVR does not change significantly. In this case, no changes in the settings of theinjection molding machines and reduction or increase in production times will be necessary. When re-melting the granulate samples, no excess waste was generated, which would then need to be disposed of and the samples could be re-used for further measurement after grinding.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201929906001