Loading…

Study on Efficient Dephosphorization in Converter Based on Thermodynamic Calculation

Given the accelerating depletion of iron ore resources, there is growing concern within the steel industry regarding the availability of high-phosphorus iron ore. However, it is important to note that the utilization of high-phosphorus iron ore may result in elevated phosphorus content and notable f...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2023-07, Vol.13 (7), p.1132
Main Authors: Wang, Zhong-Liang, Song, Tian-Le, Zhao, Li-Hua, Bao, Yan-Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given the accelerating depletion of iron ore resources, there is growing concern within the steel industry regarding the availability of high-phosphorus iron ore. However, it is important to note that the utilization of high-phosphorus iron ore may result in elevated phosphorus content and notable fluctuations in molten iron, thereby imposing additional challenges on the dephosphorization process in steelmaking. The most urgent issue in the process of converter steelmaking is how to achieve efficient dephosphorization. In this study, the influence of various factors on the logarithm of the phosphorus balance distribution ratio (lgLp), the logarithm of the P2O5 activity coefficient (lgγP2O5), and the logarithm of the phosphorus capacity (lgCp) were examined through thermodynamic calculations. The impact of each factor on dephosphorization was analyzed, and the optimal conditions for the dephosphorization stage of the converter were determined. Furthermore, the influence of basicity and FetO content on the form of phosphorus in the slag was analyzed using FactSage 7.2 software, and the precipitation rules of the slag phases were explored. The thermodynamic calculation results indicated that increasing the basicity of the dephosphorization slag was beneficial for dephosphorization, but it should be maintained below 3. The best dephosphorization effect was achieved when the FetO content was around 20%. The reaction temperature during the dephosphorization stage should be kept low, as the dephosphorization efficiency decreased sharply with the increasing temperature. In dephosphorization slag, Ca3(PO4)2 usually formed a solid solution with Ca2SiO4, so the form of phosphorus in the slag was mainly determined by the precipitation form and content of Ca2SiO4. The phases in the dephosphorization slag mainly consisted of a phosphorus-rich phase, an iron-rich phase, and a matrix phase. The results of scanning electron microscopy and X-ray diffraction analyses were consistent with the thermodynamic calculation results.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst13071132