Loading…

Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy-Forchhiemer’s model

The current research is conducted to investigate the slip effect and to analyze entropy production in both hybrid nanofluids, and common nanofluids flow past a convectively heated three-dimensional stretching sheet placed in a porous medium. The slip flow is considered in a Darcy-Forchheimer’s schem...

Full description

Saved in:
Bibliographic Details
Published in:Alexandria engineering journal 2020-12, Vol.59 (6), p.5247-5261
Main Authors: Yusuf, T.A., Mabood, F., Khan, W.A., Gbadeyan, J.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-e82d914899576de27def2d0b1a4fd6baaa5ff468724f8d618d2af533b2fd9c583
cites cdi_FETCH-LOGICAL-c406t-e82d914899576de27def2d0b1a4fd6baaa5ff468724f8d618d2af533b2fd9c583
container_end_page 5261
container_issue 6
container_start_page 5247
container_title Alexandria engineering journal
container_volume 59
creator Yusuf, T.A.
Mabood, F.
Khan, W.A.
Gbadeyan, J.A.
description The current research is conducted to investigate the slip effect and to analyze entropy production in both hybrid nanofluids, and common nanofluids flow past a convectively heated three-dimensional stretching sheet placed in a porous medium. The slip flow is considered in a Darcy-Forchheimer’s scheme by incorporating the nonlinear thermal radiation. Water is taken as base fluid, while Copper and Titanium dioxide nanoparticles are considered. The governing models are overset into dimensionless variables using similarity transformation, and the solution is acquired numerically. The impacts of pertinent factors on the flow, heat transfer, and entropy generation rates are explored. Additional plot portraying the streamlines and isotherms for both nanofluids are presented to examine the hydrothermal behavior. Skin friction and heat transport are discussed with sensible judgment. A comparison with earlier studies is unwrapped to ensure the model’s validity. The results communicate that temperature is enhanced with porosity, whereas velocity is found to be decelerated. Bejan number is decreasing with an increase in the nanoparticle volume fraction of nanoparticles. Furthermore, hybrid nanofluids generate less entropy than common nanofluids.
doi_str_mv 10.1016/j.aej.2020.09.053
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_53b01f0f0c3544c9ae06c6c71d82b7aa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1110016820304968</els_id><doaj_id>oai_doaj_org_article_53b01f0f0c3544c9ae06c6c71d82b7aa</doaj_id><sourcerecordid>S1110016820304968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-e82d914899576de27def2d0b1a4fd6baaa5ff468724f8d618d2af533b2fd9c583</originalsourceid><addsrcrecordid>eNp9UUtu3DAM9aIFGqQ5QHe6gF1J_rerYtI0AwSYTboWaImKadjSQPKk8K7X6AF6sZ6kmk6RZQgCBN7DeyD5suyD4IXgovk4FYBTIbnkBe8LXpdvsishBM8T2b3LbmKceKq67au-ucp-70PAZwyRBppp3Rg4mLdIkXnLdqf8kQ4yv5cHNm5DIJM7cN7OJzKMliO5p9TMOwaszG9ZXAOuejxjcURcGZ2Zow_-FNmChk4L-0HryJx3MzmEwAIYgpW8-8RuIegtv_NBjyPhguHPz19J5g3O77O3FuaIN__ndfb97uvj7j5_OHzb77485LrizZpjJ00vqq7v67YxKFuDVho-CKisaQYAqK2tmq6Vle1MIzojwdZlOUhrel135XW2v_gaD5M6BlogbMoDqX-AD08Kwkp6RlWXAxeWW67Luqp0D8gb3ehWmE4OLUDyEhcvHXyMAe2Ln-DqHJWaVIpKnaNSvFcpqqT5fNFgOvKZMKioCZ1Orwuo17QFvaL-C7j0oeg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy-Forchhiemer’s model</title><source>ScienceDirect®</source><creator>Yusuf, T.A. ; Mabood, F. ; Khan, W.A. ; Gbadeyan, J.A.</creator><creatorcontrib>Yusuf, T.A. ; Mabood, F. ; Khan, W.A. ; Gbadeyan, J.A.</creatorcontrib><description>The current research is conducted to investigate the slip effect and to analyze entropy production in both hybrid nanofluids, and common nanofluids flow past a convectively heated three-dimensional stretching sheet placed in a porous medium. The slip flow is considered in a Darcy-Forchheimer’s scheme by incorporating the nonlinear thermal radiation. Water is taken as base fluid, while Copper and Titanium dioxide nanoparticles are considered. The governing models are overset into dimensionless variables using similarity transformation, and the solution is acquired numerically. The impacts of pertinent factors on the flow, heat transfer, and entropy generation rates are explored. Additional plot portraying the streamlines and isotherms for both nanofluids are presented to examine the hydrothermal behavior. Skin friction and heat transport are discussed with sensible judgment. A comparison with earlier studies is unwrapped to ensure the model’s validity. The results communicate that temperature is enhanced with porosity, whereas velocity is found to be decelerated. Bejan number is decreasing with an increase in the nanoparticle volume fraction of nanoparticles. Furthermore, hybrid nanofluids generate less entropy than common nanofluids.</description><identifier>ISSN: 1110-0168</identifier><identifier>DOI: 10.1016/j.aej.2020.09.053</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>3D-flow ; Entropy generation rate ; Hybrid-nanofluid ; Irreversibility ; MHD ; Non-linear radiation</subject><ispartof>Alexandria engineering journal, 2020-12, Vol.59 (6), p.5247-5261</ispartof><rights>2020 Faculty of Engineering, Alexandria University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-e82d914899576de27def2d0b1a4fd6baaa5ff468724f8d618d2af533b2fd9c583</citedby><cites>FETCH-LOGICAL-c406t-e82d914899576de27def2d0b1a4fd6baaa5ff468724f8d618d2af533b2fd9c583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1110016820304968$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Yusuf, T.A.</creatorcontrib><creatorcontrib>Mabood, F.</creatorcontrib><creatorcontrib>Khan, W.A.</creatorcontrib><creatorcontrib>Gbadeyan, J.A.</creatorcontrib><title>Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy-Forchhiemer’s model</title><title>Alexandria engineering journal</title><description>The current research is conducted to investigate the slip effect and to analyze entropy production in both hybrid nanofluids, and common nanofluids flow past a convectively heated three-dimensional stretching sheet placed in a porous medium. The slip flow is considered in a Darcy-Forchheimer’s scheme by incorporating the nonlinear thermal radiation. Water is taken as base fluid, while Copper and Titanium dioxide nanoparticles are considered. The governing models are overset into dimensionless variables using similarity transformation, and the solution is acquired numerically. The impacts of pertinent factors on the flow, heat transfer, and entropy generation rates are explored. Additional plot portraying the streamlines and isotherms for both nanofluids are presented to examine the hydrothermal behavior. Skin friction and heat transport are discussed with sensible judgment. A comparison with earlier studies is unwrapped to ensure the model’s validity. The results communicate that temperature is enhanced with porosity, whereas velocity is found to be decelerated. Bejan number is decreasing with an increase in the nanoparticle volume fraction of nanoparticles. Furthermore, hybrid nanofluids generate less entropy than common nanofluids.</description><subject>3D-flow</subject><subject>Entropy generation rate</subject><subject>Hybrid-nanofluid</subject><subject>Irreversibility</subject><subject>MHD</subject><subject>Non-linear radiation</subject><issn>1110-0168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UUtu3DAM9aIFGqQ5QHe6gF1J_rerYtI0AwSYTboWaImKadjSQPKk8K7X6AF6sZ6kmk6RZQgCBN7DeyD5suyD4IXgovk4FYBTIbnkBe8LXpdvsishBM8T2b3LbmKceKq67au-ucp-70PAZwyRBppp3Rg4mLdIkXnLdqf8kQ4yv5cHNm5DIJM7cN7OJzKMliO5p9TMOwaszG9ZXAOuejxjcURcGZ2Zow_-FNmChk4L-0HryJx3MzmEwAIYgpW8-8RuIegtv_NBjyPhguHPz19J5g3O77O3FuaIN__ndfb97uvj7j5_OHzb77485LrizZpjJ00vqq7v67YxKFuDVho-CKisaQYAqK2tmq6Vle1MIzojwdZlOUhrel135XW2v_gaD5M6BlogbMoDqX-AD08Kwkp6RlWXAxeWW67Luqp0D8gb3ehWmE4OLUDyEhcvHXyMAe2Ln-DqHJWaVIpKnaNSvFcpqqT5fNFgOvKZMKioCZ1Orwuo17QFvaL-C7j0oeg</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Yusuf, T.A.</creator><creator>Mabood, F.</creator><creator>Khan, W.A.</creator><creator>Gbadeyan, J.A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202012</creationdate><title>Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy-Forchhiemer’s model</title><author>Yusuf, T.A. ; Mabood, F. ; Khan, W.A. ; Gbadeyan, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-e82d914899576de27def2d0b1a4fd6baaa5ff468724f8d618d2af533b2fd9c583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D-flow</topic><topic>Entropy generation rate</topic><topic>Hybrid-nanofluid</topic><topic>Irreversibility</topic><topic>MHD</topic><topic>Non-linear radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yusuf, T.A.</creatorcontrib><creatorcontrib>Mabood, F.</creatorcontrib><creatorcontrib>Khan, W.A.</creatorcontrib><creatorcontrib>Gbadeyan, J.A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Alexandria engineering journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yusuf, T.A.</au><au>Mabood, F.</au><au>Khan, W.A.</au><au>Gbadeyan, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy-Forchhiemer’s model</atitle><jtitle>Alexandria engineering journal</jtitle><date>2020-12</date><risdate>2020</risdate><volume>59</volume><issue>6</issue><spage>5247</spage><epage>5261</epage><pages>5247-5261</pages><issn>1110-0168</issn><abstract>The current research is conducted to investigate the slip effect and to analyze entropy production in both hybrid nanofluids, and common nanofluids flow past a convectively heated three-dimensional stretching sheet placed in a porous medium. The slip flow is considered in a Darcy-Forchheimer’s scheme by incorporating the nonlinear thermal radiation. Water is taken as base fluid, while Copper and Titanium dioxide nanoparticles are considered. The governing models are overset into dimensionless variables using similarity transformation, and the solution is acquired numerically. The impacts of pertinent factors on the flow, heat transfer, and entropy generation rates are explored. Additional plot portraying the streamlines and isotherms for both nanofluids are presented to examine the hydrothermal behavior. Skin friction and heat transport are discussed with sensible judgment. A comparison with earlier studies is unwrapped to ensure the model’s validity. The results communicate that temperature is enhanced with porosity, whereas velocity is found to be decelerated. Bejan number is decreasing with an increase in the nanoparticle volume fraction of nanoparticles. Furthermore, hybrid nanofluids generate less entropy than common nanofluids.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.aej.2020.09.053</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-0168
ispartof Alexandria engineering journal, 2020-12, Vol.59 (6), p.5247-5261
issn 1110-0168
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_53b01f0f0c3544c9ae06c6c71d82b7aa
source ScienceDirect®
subjects 3D-flow
Entropy generation rate
Hybrid-nanofluid
Irreversibility
MHD
Non-linear radiation
title Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy-Forchhiemer’s model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irreversibility%20analysis%20of%20Cu-TiO2-H2O%20hybrid-nanofluid%20impinging%20on%20a%203-D%20stretching%20sheet%20in%20a%20porous%20medium%20with%20nonlinear%20radiation:%20Darcy-Forchhiemer%E2%80%99s%20model&rft.jtitle=Alexandria%20engineering%20journal&rft.au=Yusuf,%20T.A.&rft.date=2020-12&rft.volume=59&rft.issue=6&rft.spage=5247&rft.epage=5261&rft.pages=5247-5261&rft.issn=1110-0168&rft_id=info:doi/10.1016/j.aej.2020.09.053&rft_dat=%3Celsevier_doaj_%3ES1110016820304968%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-e82d914899576de27def2d0b1a4fd6baaa5ff468724f8d618d2af533b2fd9c583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true