Loading…

Heat Transfer Analysis of Damaged Shrouded High-Pressure Turbine Rotor Blades

Due to the increasingly high turbine inlet temperatures, heat transfer analysis is now, more than ever, a vital part of the design and optimization of high-pressure turbine rotor blades of a modern jet engine. The present study aimed to find out how shape deviation and in-service deterioration affec...

Full description

Saved in:
Bibliographic Details
Published in:International journal of turbomachinery, propulsion and power propulsion and power, 2023-08, Vol.8 (3), p.24
Main Authors: Carta, Mario, Ghisu, Tiziano, Shahpar, Shahrokh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-f3cd6d3d60f003bc0c9e76089f68c0ea32c614801dd6d1a512fe1633b6c4fc2a3
cites cdi_FETCH-LOGICAL-c406t-f3cd6d3d60f003bc0c9e76089f68c0ea32c614801dd6d1a512fe1633b6c4fc2a3
container_end_page
container_issue 3
container_start_page 24
container_title International journal of turbomachinery, propulsion and power
container_volume 8
creator Carta, Mario
Ghisu, Tiziano
Shahpar, Shahrokh
description Due to the increasingly high turbine inlet temperatures, heat transfer analysis is now, more than ever, a vital part of the design and optimization of high-pressure turbine rotor blades of a modern jet engine. The present study aimed to find out how shape deviation and in-service deterioration affect heat exchange patterns on the rotor blade. The rotor geometries used for this analysis are represented by a set of high-resolution 3D structured light scans of blades with the same number of in-service hours. An automatic meshing technique was employed to generate high-resolution meshes directly on the scanned rotor geometries, which captured all the surface features with high fidelity. Steady-state 3D RANS flow simulations with a k-ω SST turbulence model were conducted on a one-and-a-half stage computational domain of the scanned geometries. First, the distribution of the heat transfer coefficient was calculated for each blade; then, a correlation was sought between the heat transfer coefficient and parametrized shape deviation, to assess the impact of each parameter on HTC levels.
doi_str_mv 10.3390/ijtpp8030024
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_53b2d046d9c24004b56cc271af2cecc1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771804451</galeid><doaj_id>oai_doaj_org_article_53b2d046d9c24004b56cc271af2cecc1</doaj_id><sourcerecordid>A771804451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f3cd6d3d60f003bc0c9e76089f68c0ea32c614801dd6d1a512fe1633b6c4fc2a3</originalsourceid><addsrcrecordid>eNpNkU1rHDEMQIfSQEOaW3_AQK6ZVP4Yj-e4TZpsIKWh2UBvRiPbGy-74409c8i_r7dbStBBQjw9hFRVXxhcCdHD17CZ9nsNAoDLD9Upb0E2TKvfH9_Vn6rznDdQENCd1vy0-rF0ONWrhGP2LtWLEbdvOeQ6-voGd7h2tn56SXG2pViG9UvzmFzOc3L1ak5DGF39K04x1d-2aF3-XJ143GZ3_i-fVc-331fXy-bh59399eKhIQlqarwgq6ywCjyAGAiod50C3XulCRwKTopJDcwWjGHLuHdMCTEokp44irPq_ui1ETdmn8IO05uJGMzfRkxrg2kKtHWmFQO3IJXtiUsAObSKiHcMPSdHxIrr4ujap_g6uzyZTZxTuUM2XPfAeatBFurqSK2xSMPo45SQSli3CxRH50PpL7qOFVq2B-3lcYBSzDk5_39NBubwMPP-YeIPqSOH6A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890225804</pqid></control><display><type>article</type><title>Heat Transfer Analysis of Damaged Shrouded High-Pressure Turbine Rotor Blades</title><source>Publicly Available Content Database</source><creator>Carta, Mario ; Ghisu, Tiziano ; Shahpar, Shahrokh</creator><creatorcontrib>Carta, Mario ; Ghisu, Tiziano ; Shahpar, Shahrokh</creatorcontrib><description>Due to the increasingly high turbine inlet temperatures, heat transfer analysis is now, more than ever, a vital part of the design and optimization of high-pressure turbine rotor blades of a modern jet engine. The present study aimed to find out how shape deviation and in-service deterioration affect heat exchange patterns on the rotor blade. The rotor geometries used for this analysis are represented by a set of high-resolution 3D structured light scans of blades with the same number of in-service hours. An automatic meshing technique was employed to generate high-resolution meshes directly on the scanned rotor geometries, which captured all the surface features with high fidelity. Steady-state 3D RANS flow simulations with a k-ω SST turbulence model were conducted on a one-and-a-half stage computational domain of the scanned geometries. First, the distribution of the heat transfer coefficient was calculated for each blade; then, a correlation was sought between the heat transfer coefficient and parametrized shape deviation, to assess the impact of each parameter on HTC levels.</description><identifier>ISSN: 2504-186X</identifier><identifier>EISSN: 2504-186X</identifier><identifier>DOI: 10.3390/ijtpp8030024</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerodynamics ; Aircraft engine industry ; Cooling ; Design optimization ; Deviation ; Equilibrium flow ; Flow simulation ; Gas turbine engines ; Geometry ; Heat exchange ; Heat transfer ; Heat transfer coefficients ; High pressure ; High resolution ; high-pressure turbine ; Jet engines ; K-omega turbulence model ; level set meshing ; multi-fidelity simulation ; Rotor blades ; Rotor blades (turbomachinery) ; shrouded blade ; Three dimensional flow ; Turbines</subject><ispartof>International journal of turbomachinery, propulsion and power, 2023-08, Vol.8 (3), p.24</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f3cd6d3d60f003bc0c9e76089f68c0ea32c614801dd6d1a512fe1633b6c4fc2a3</citedby><cites>FETCH-LOGICAL-c406t-f3cd6d3d60f003bc0c9e76089f68c0ea32c614801dd6d1a512fe1633b6c4fc2a3</cites><orcidid>0000-0002-2593-2707 ; 0000-0002-4636-7188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2890225804/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2890225804?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Carta, Mario</creatorcontrib><creatorcontrib>Ghisu, Tiziano</creatorcontrib><creatorcontrib>Shahpar, Shahrokh</creatorcontrib><title>Heat Transfer Analysis of Damaged Shrouded High-Pressure Turbine Rotor Blades</title><title>International journal of turbomachinery, propulsion and power</title><description>Due to the increasingly high turbine inlet temperatures, heat transfer analysis is now, more than ever, a vital part of the design and optimization of high-pressure turbine rotor blades of a modern jet engine. The present study aimed to find out how shape deviation and in-service deterioration affect heat exchange patterns on the rotor blade. The rotor geometries used for this analysis are represented by a set of high-resolution 3D structured light scans of blades with the same number of in-service hours. An automatic meshing technique was employed to generate high-resolution meshes directly on the scanned rotor geometries, which captured all the surface features with high fidelity. Steady-state 3D RANS flow simulations with a k-ω SST turbulence model were conducted on a one-and-a-half stage computational domain of the scanned geometries. First, the distribution of the heat transfer coefficient was calculated for each blade; then, a correlation was sought between the heat transfer coefficient and parametrized shape deviation, to assess the impact of each parameter on HTC levels.</description><subject>Aerodynamics</subject><subject>Aircraft engine industry</subject><subject>Cooling</subject><subject>Design optimization</subject><subject>Deviation</subject><subject>Equilibrium flow</subject><subject>Flow simulation</subject><subject>Gas turbine engines</subject><subject>Geometry</subject><subject>Heat exchange</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>High pressure</subject><subject>High resolution</subject><subject>high-pressure turbine</subject><subject>Jet engines</subject><subject>K-omega turbulence model</subject><subject>level set meshing</subject><subject>multi-fidelity simulation</subject><subject>Rotor blades</subject><subject>Rotor blades (turbomachinery)</subject><subject>shrouded blade</subject><subject>Three dimensional flow</subject><subject>Turbines</subject><issn>2504-186X</issn><issn>2504-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1rHDEMQIfSQEOaW3_AQK6ZVP4Yj-e4TZpsIKWh2UBvRiPbGy-74409c8i_r7dbStBBQjw9hFRVXxhcCdHD17CZ9nsNAoDLD9Upb0E2TKvfH9_Vn6rznDdQENCd1vy0-rF0ONWrhGP2LtWLEbdvOeQ6-voGd7h2tn56SXG2pViG9UvzmFzOc3L1ak5DGF39K04x1d-2aF3-XJ143GZ3_i-fVc-331fXy-bh59399eKhIQlqarwgq6ywCjyAGAiod50C3XulCRwKTopJDcwWjGHLuHdMCTEokp44irPq_ui1ETdmn8IO05uJGMzfRkxrg2kKtHWmFQO3IJXtiUsAObSKiHcMPSdHxIrr4ujap_g6uzyZTZxTuUM2XPfAeatBFurqSK2xSMPo45SQSli3CxRH50PpL7qOFVq2B-3lcYBSzDk5_39NBubwMPP-YeIPqSOH6A</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Carta, Mario</creator><creator>Ghisu, Tiziano</creator><creator>Shahpar, Shahrokh</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2593-2707</orcidid><orcidid>https://orcid.org/0000-0002-4636-7188</orcidid></search><sort><creationdate>20230801</creationdate><title>Heat Transfer Analysis of Damaged Shrouded High-Pressure Turbine Rotor Blades</title><author>Carta, Mario ; Ghisu, Tiziano ; Shahpar, Shahrokh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f3cd6d3d60f003bc0c9e76089f68c0ea32c614801dd6d1a512fe1633b6c4fc2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerodynamics</topic><topic>Aircraft engine industry</topic><topic>Cooling</topic><topic>Design optimization</topic><topic>Deviation</topic><topic>Equilibrium flow</topic><topic>Flow simulation</topic><topic>Gas turbine engines</topic><topic>Geometry</topic><topic>Heat exchange</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>High pressure</topic><topic>High resolution</topic><topic>high-pressure turbine</topic><topic>Jet engines</topic><topic>K-omega turbulence model</topic><topic>level set meshing</topic><topic>multi-fidelity simulation</topic><topic>Rotor blades</topic><topic>Rotor blades (turbomachinery)</topic><topic>shrouded blade</topic><topic>Three dimensional flow</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carta, Mario</creatorcontrib><creatorcontrib>Ghisu, Tiziano</creatorcontrib><creatorcontrib>Shahpar, Shahrokh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of turbomachinery, propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carta, Mario</au><au>Ghisu, Tiziano</au><au>Shahpar, Shahrokh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transfer Analysis of Damaged Shrouded High-Pressure Turbine Rotor Blades</atitle><jtitle>International journal of turbomachinery, propulsion and power</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>8</volume><issue>3</issue><spage>24</spage><pages>24-</pages><issn>2504-186X</issn><eissn>2504-186X</eissn><abstract>Due to the increasingly high turbine inlet temperatures, heat transfer analysis is now, more than ever, a vital part of the design and optimization of high-pressure turbine rotor blades of a modern jet engine. The present study aimed to find out how shape deviation and in-service deterioration affect heat exchange patterns on the rotor blade. The rotor geometries used for this analysis are represented by a set of high-resolution 3D structured light scans of blades with the same number of in-service hours. An automatic meshing technique was employed to generate high-resolution meshes directly on the scanned rotor geometries, which captured all the surface features with high fidelity. Steady-state 3D RANS flow simulations with a k-ω SST turbulence model were conducted on a one-and-a-half stage computational domain of the scanned geometries. First, the distribution of the heat transfer coefficient was calculated for each blade; then, a correlation was sought between the heat transfer coefficient and parametrized shape deviation, to assess the impact of each parameter on HTC levels.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijtpp8030024</doi><orcidid>https://orcid.org/0000-0002-2593-2707</orcidid><orcidid>https://orcid.org/0000-0002-4636-7188</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-186X
ispartof International journal of turbomachinery, propulsion and power, 2023-08, Vol.8 (3), p.24
issn 2504-186X
2504-186X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_53b2d046d9c24004b56cc271af2cecc1
source Publicly Available Content Database
subjects Aerodynamics
Aircraft engine industry
Cooling
Design optimization
Deviation
Equilibrium flow
Flow simulation
Gas turbine engines
Geometry
Heat exchange
Heat transfer
Heat transfer coefficients
High pressure
High resolution
high-pressure turbine
Jet engines
K-omega turbulence model
level set meshing
multi-fidelity simulation
Rotor blades
Rotor blades (turbomachinery)
shrouded blade
Three dimensional flow
Turbines
title Heat Transfer Analysis of Damaged Shrouded High-Pressure Turbine Rotor Blades
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transfer%20Analysis%20of%20Damaged%20Shrouded%20High-Pressure%20Turbine%20Rotor%20Blades&rft.jtitle=International%20journal%20of%20turbomachinery,%20propulsion%20and%20power&rft.au=Carta,%20Mario&rft.date=2023-08-01&rft.volume=8&rft.issue=3&rft.spage=24&rft.pages=24-&rft.issn=2504-186X&rft.eissn=2504-186X&rft_id=info:doi/10.3390/ijtpp8030024&rft_dat=%3Cgale_doaj_%3EA771804451%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-f3cd6d3d60f003bc0c9e76089f68c0ea32c614801dd6d1a512fe1633b6c4fc2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890225804&rft_id=info:pmid/&rft_galeid=A771804451&rfr_iscdi=true