Loading…

Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation

Battery parameters such as State of Charge (SoC) and State of Health (SoH) are key to modern applications; thus, there is interest in developing robust algorithms for estimating them. Most of the techniques explored to this end rely on a battery model. As batteries age, their behavior starts differi...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-11, Vol.14 (22), p.7496
Main Authors: Sanz-Gorrachategui, Iván, Pastor-Flores, Pablo, Bono-Nuez, Antonio, Ferrer-Sánchez, Cora, Guillén-Asensio, Alejandro, Bernal-Ruiz, Carlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c320t-8401782d7a7d1290dd47a6762a119bcff2aa845f5fdb6f51d2bfe7ed0d165d0d3
container_end_page
container_issue 22
container_start_page 7496
container_title Energies (Basel)
container_volume 14
creator Sanz-Gorrachategui, Iván
Pastor-Flores, Pablo
Bono-Nuez, Antonio
Ferrer-Sánchez, Cora
Guillén-Asensio, Alejandro
Bernal-Ruiz, Carlos
description Battery parameters such as State of Charge (SoC) and State of Health (SoH) are key to modern applications; thus, there is interest in developing robust algorithms for estimating them. Most of the techniques explored to this end rely on a battery model. As batteries age, their behavior starts differing from the models, so it is vital to update such models in order to be able to track battery behavior after some time in application. This paper presents a method for performing online battery parameter tracking by using the Extremum Seeking (ES) algorithm. This algorithm fits voltage waveforms by tuning the internal parameters of an estimation model and comparing the voltage output with the real battery. The goal is to estimate the electrical parameters of the battery model and to be able to obtain them even as batteries age, when the model behaves different than the cell. To this end, a simple battery model capable of capturing degradation and different tests have been proposed to replicate real application scenarios, and the performance of the ES algorithm in such scenarios has been measured. The results are positive, obtaining converging estimations both with new and aged batteries, with accurate outputs for the intended purpose.
doi_str_mv 10.3390/en14227496
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_53c4bdf191ac443282b42706c21d326b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_53c4bdf191ac443282b42706c21d326b</doaj_id><sourcerecordid>2602040199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-8401782d7a7d1290dd47a6762a119bcff2aa845f5fdb6f51d2bfe7ed0d165d0d3</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgqb34CwLehOh-ZTd7rLVqoKCgnpfJfsStTVI3W7H_3rQVdQ5vHsObNw8mSc4xuqJUomvbYkaIYJIfJSMsJc8wEvT4Hz9NJn2_RENRiimlo0QvfHzzmyYruza9gRht2KZPEKCxA01LY9vondcQ_SD49JDOv2KwzaZJn619922dzrq298aGHZ_WO4TWpLe2DmD2a2fJiYNVbyc_fZy83s1fZg_Z4vG-nE0XmaYExaxgCIuCGAHCYCKRMUwAF5wAxrLSzhGAguUud6biLseGVM4Ka5DBPB-QjpPy4Gs6WKp18A2ErerAq_2gC7WCEL1eWZVTzSrjsMSgGaOkIBUjAnFNsKGEV4PXxcFrHbqPje2jWnab0A7xFeGIoCGrlIPq8qDSoev7YN3vVYzU7ifq7yf0G-CofiU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602040199</pqid></control><display><type>article</type><title>Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation</title><source>Publicly Available Content (ProQuest)</source><creator>Sanz-Gorrachategui, Iván ; Pastor-Flores, Pablo ; Bono-Nuez, Antonio ; Ferrer-Sánchez, Cora ; Guillén-Asensio, Alejandro ; Bernal-Ruiz, Carlos</creator><creatorcontrib>Sanz-Gorrachategui, Iván ; Pastor-Flores, Pablo ; Bono-Nuez, Antonio ; Ferrer-Sánchez, Cora ; Guillén-Asensio, Alejandro ; Bernal-Ruiz, Carlos</creatorcontrib><description>Battery parameters such as State of Charge (SoC) and State of Health (SoH) are key to modern applications; thus, there is interest in developing robust algorithms for estimating them. Most of the techniques explored to this end rely on a battery model. As batteries age, their behavior starts differing from the models, so it is vital to update such models in order to be able to track battery behavior after some time in application. This paper presents a method for performing online battery parameter tracking by using the Extremum Seeking (ES) algorithm. This algorithm fits voltage waveforms by tuning the internal parameters of an estimation model and comparing the voltage output with the real battery. The goal is to estimate the electrical parameters of the battery model and to be able to obtain them even as batteries age, when the model behaves different than the cell. To this end, a simple battery model capable of capturing degradation and different tests have been proposed to replicate real application scenarios, and the performance of the ES algorithm in such scenarios has been measured. The results are positive, obtaining converging estimations both with new and aged batteries, with accurate outputs for the intended purpose.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14227496</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aging ; Algorithms ; Batteries ; battery aging ; Electric potential ; Energy storage ; extremum seeking ; Li-ion battery ; Lithium ; Lithium-ion batteries ; Machine learning ; Parameter estimation ; Parameter identification ; parameter tracking ; SoC ; SoH ; State of charge ; Voltage ; Waveforms</subject><ispartof>Energies (Basel), 2021-11, Vol.14 (22), p.7496</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-8401782d7a7d1290dd47a6762a119bcff2aa845f5fdb6f51d2bfe7ed0d165d0d3</cites><orcidid>0000-0002-7897-3596 ; 0000-0002-8451-0846 ; 0000-0003-0198-5094 ; 0000-0001-5664-7063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602040199/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602040199?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Sanz-Gorrachategui, Iván</creatorcontrib><creatorcontrib>Pastor-Flores, Pablo</creatorcontrib><creatorcontrib>Bono-Nuez, Antonio</creatorcontrib><creatorcontrib>Ferrer-Sánchez, Cora</creatorcontrib><creatorcontrib>Guillén-Asensio, Alejandro</creatorcontrib><creatorcontrib>Bernal-Ruiz, Carlos</creatorcontrib><title>Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation</title><title>Energies (Basel)</title><description>Battery parameters such as State of Charge (SoC) and State of Health (SoH) are key to modern applications; thus, there is interest in developing robust algorithms for estimating them. Most of the techniques explored to this end rely on a battery model. As batteries age, their behavior starts differing from the models, so it is vital to update such models in order to be able to track battery behavior after some time in application. This paper presents a method for performing online battery parameter tracking by using the Extremum Seeking (ES) algorithm. This algorithm fits voltage waveforms by tuning the internal parameters of an estimation model and comparing the voltage output with the real battery. The goal is to estimate the electrical parameters of the battery model and to be able to obtain them even as batteries age, when the model behaves different than the cell. To this end, a simple battery model capable of capturing degradation and different tests have been proposed to replicate real application scenarios, and the performance of the ES algorithm in such scenarios has been measured. The results are positive, obtaining converging estimations both with new and aged batteries, with accurate outputs for the intended purpose.</description><subject>Aging</subject><subject>Algorithms</subject><subject>Batteries</subject><subject>battery aging</subject><subject>Electric potential</subject><subject>Energy storage</subject><subject>extremum seeking</subject><subject>Li-ion battery</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Machine learning</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>parameter tracking</subject><subject>SoC</subject><subject>SoH</subject><subject>State of charge</subject><subject>Voltage</subject><subject>Waveforms</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgqb34CwLehOh-ZTd7rLVqoKCgnpfJfsStTVI3W7H_3rQVdQ5vHsObNw8mSc4xuqJUomvbYkaIYJIfJSMsJc8wEvT4Hz9NJn2_RENRiimlo0QvfHzzmyYruza9gRht2KZPEKCxA01LY9vondcQ_SD49JDOv2KwzaZJn619922dzrq298aGHZ_WO4TWpLe2DmD2a2fJiYNVbyc_fZy83s1fZg_Z4vG-nE0XmaYExaxgCIuCGAHCYCKRMUwAF5wAxrLSzhGAguUud6biLseGVM4Ka5DBPB-QjpPy4Gs6WKp18A2ErerAq_2gC7WCEL1eWZVTzSrjsMSgGaOkIBUjAnFNsKGEV4PXxcFrHbqPje2jWnab0A7xFeGIoCGrlIPq8qDSoev7YN3vVYzU7ifq7yf0G-CofiU</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Sanz-Gorrachategui, Iván</creator><creator>Pastor-Flores, Pablo</creator><creator>Bono-Nuez, Antonio</creator><creator>Ferrer-Sánchez, Cora</creator><creator>Guillén-Asensio, Alejandro</creator><creator>Bernal-Ruiz, Carlos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7897-3596</orcidid><orcidid>https://orcid.org/0000-0002-8451-0846</orcidid><orcidid>https://orcid.org/0000-0003-0198-5094</orcidid><orcidid>https://orcid.org/0000-0001-5664-7063</orcidid></search><sort><creationdate>20211101</creationdate><title>Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation</title><author>Sanz-Gorrachategui, Iván ; Pastor-Flores, Pablo ; Bono-Nuez, Antonio ; Ferrer-Sánchez, Cora ; Guillén-Asensio, Alejandro ; Bernal-Ruiz, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-8401782d7a7d1290dd47a6762a119bcff2aa845f5fdb6f51d2bfe7ed0d165d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aging</topic><topic>Algorithms</topic><topic>Batteries</topic><topic>battery aging</topic><topic>Electric potential</topic><topic>Energy storage</topic><topic>extremum seeking</topic><topic>Li-ion battery</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Machine learning</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>parameter tracking</topic><topic>SoC</topic><topic>SoH</topic><topic>State of charge</topic><topic>Voltage</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanz-Gorrachategui, Iván</creatorcontrib><creatorcontrib>Pastor-Flores, Pablo</creatorcontrib><creatorcontrib>Bono-Nuez, Antonio</creatorcontrib><creatorcontrib>Ferrer-Sánchez, Cora</creatorcontrib><creatorcontrib>Guillén-Asensio, Alejandro</creatorcontrib><creatorcontrib>Bernal-Ruiz, Carlos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanz-Gorrachategui, Iván</au><au>Pastor-Flores, Pablo</au><au>Bono-Nuez, Antonio</au><au>Ferrer-Sánchez, Cora</au><au>Guillén-Asensio, Alejandro</au><au>Bernal-Ruiz, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation</atitle><jtitle>Energies (Basel)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>14</volume><issue>22</issue><spage>7496</spage><pages>7496-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Battery parameters such as State of Charge (SoC) and State of Health (SoH) are key to modern applications; thus, there is interest in developing robust algorithms for estimating them. Most of the techniques explored to this end rely on a battery model. As batteries age, their behavior starts differing from the models, so it is vital to update such models in order to be able to track battery behavior after some time in application. This paper presents a method for performing online battery parameter tracking by using the Extremum Seeking (ES) algorithm. This algorithm fits voltage waveforms by tuning the internal parameters of an estimation model and comparing the voltage output with the real battery. The goal is to estimate the electrical parameters of the battery model and to be able to obtain them even as batteries age, when the model behaves different than the cell. To this end, a simple battery model capable of capturing degradation and different tests have been proposed to replicate real application scenarios, and the performance of the ES algorithm in such scenarios has been measured. The results are positive, obtaining converging estimations both with new and aged batteries, with accurate outputs for the intended purpose.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en14227496</doi><orcidid>https://orcid.org/0000-0002-7897-3596</orcidid><orcidid>https://orcid.org/0000-0002-8451-0846</orcidid><orcidid>https://orcid.org/0000-0003-0198-5094</orcidid><orcidid>https://orcid.org/0000-0001-5664-7063</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2021-11, Vol.14 (22), p.7496
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_53c4bdf191ac443282b42706c21d326b
source Publicly Available Content (ProQuest)
subjects Aging
Algorithms
Batteries
battery aging
Electric potential
Energy storage
extremum seeking
Li-ion battery
Lithium
Lithium-ion batteries
Machine learning
Parameter estimation
Parameter identification
parameter tracking
SoC
SoH
State of charge
Voltage
Waveforms
title Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium-Ion%20Battery%20Parameter%20Identification%20via%20Extremum%20Seeking%20Considering%20Aging%20and%20Degradation&rft.jtitle=Energies%20(Basel)&rft.au=Sanz-Gorrachategui,%20Iv%C3%A1n&rft.date=2021-11-01&rft.volume=14&rft.issue=22&rft.spage=7496&rft.pages=7496-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14227496&rft_dat=%3Cproquest_doaj_%3E2602040199%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-8401782d7a7d1290dd47a6762a119bcff2aa845f5fdb6f51d2bfe7ed0d165d0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602040199&rft_id=info:pmid/&rfr_iscdi=true