Loading…
Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation
Battery parameters such as State of Charge (SoC) and State of Health (SoH) are key to modern applications; thus, there is interest in developing robust algorithms for estimating them. Most of the techniques explored to this end rely on a battery model. As batteries age, their behavior starts differi...
Saved in:
Published in: | Energies (Basel) 2021-11, Vol.14 (22), p.7496 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c320t-8401782d7a7d1290dd47a6762a119bcff2aa845f5fdb6f51d2bfe7ed0d165d0d3 |
container_end_page | |
container_issue | 22 |
container_start_page | 7496 |
container_title | Energies (Basel) |
container_volume | 14 |
creator | Sanz-Gorrachategui, Iván Pastor-Flores, Pablo Bono-Nuez, Antonio Ferrer-Sánchez, Cora Guillén-Asensio, Alejandro Bernal-Ruiz, Carlos |
description | Battery parameters such as State of Charge (SoC) and State of Health (SoH) are key to modern applications; thus, there is interest in developing robust algorithms for estimating them. Most of the techniques explored to this end rely on a battery model. As batteries age, their behavior starts differing from the models, so it is vital to update such models in order to be able to track battery behavior after some time in application. This paper presents a method for performing online battery parameter tracking by using the Extremum Seeking (ES) algorithm. This algorithm fits voltage waveforms by tuning the internal parameters of an estimation model and comparing the voltage output with the real battery. The goal is to estimate the electrical parameters of the battery model and to be able to obtain them even as batteries age, when the model behaves different than the cell. To this end, a simple battery model capable of capturing degradation and different tests have been proposed to replicate real application scenarios, and the performance of the ES algorithm in such scenarios has been measured. The results are positive, obtaining converging estimations both with new and aged batteries, with accurate outputs for the intended purpose. |
doi_str_mv | 10.3390/en14227496 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_53c4bdf191ac443282b42706c21d326b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_53c4bdf191ac443282b42706c21d326b</doaj_id><sourcerecordid>2602040199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-8401782d7a7d1290dd47a6762a119bcff2aa845f5fdb6f51d2bfe7ed0d165d0d3</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgqb34CwLehOh-ZTd7rLVqoKCgnpfJfsStTVI3W7H_3rQVdQ5vHsObNw8mSc4xuqJUomvbYkaIYJIfJSMsJc8wEvT4Hz9NJn2_RENRiimlo0QvfHzzmyYruza9gRht2KZPEKCxA01LY9vondcQ_SD49JDOv2KwzaZJn619922dzrq298aGHZ_WO4TWpLe2DmD2a2fJiYNVbyc_fZy83s1fZg_Z4vG-nE0XmaYExaxgCIuCGAHCYCKRMUwAF5wAxrLSzhGAguUud6biLseGVM4Ka5DBPB-QjpPy4Gs6WKp18A2ErerAq_2gC7WCEL1eWZVTzSrjsMSgGaOkIBUjAnFNsKGEV4PXxcFrHbqPje2jWnab0A7xFeGIoCGrlIPq8qDSoev7YN3vVYzU7ifq7yf0G-CofiU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602040199</pqid></control><display><type>article</type><title>Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation</title><source>Publicly Available Content (ProQuest)</source><creator>Sanz-Gorrachategui, Iván ; Pastor-Flores, Pablo ; Bono-Nuez, Antonio ; Ferrer-Sánchez, Cora ; Guillén-Asensio, Alejandro ; Bernal-Ruiz, Carlos</creator><creatorcontrib>Sanz-Gorrachategui, Iván ; Pastor-Flores, Pablo ; Bono-Nuez, Antonio ; Ferrer-Sánchez, Cora ; Guillén-Asensio, Alejandro ; Bernal-Ruiz, Carlos</creatorcontrib><description>Battery parameters such as State of Charge (SoC) and State of Health (SoH) are key to modern applications; thus, there is interest in developing robust algorithms for estimating them. Most of the techniques explored to this end rely on a battery model. As batteries age, their behavior starts differing from the models, so it is vital to update such models in order to be able to track battery behavior after some time in application. This paper presents a method for performing online battery parameter tracking by using the Extremum Seeking (ES) algorithm. This algorithm fits voltage waveforms by tuning the internal parameters of an estimation model and comparing the voltage output with the real battery. The goal is to estimate the electrical parameters of the battery model and to be able to obtain them even as batteries age, when the model behaves different than the cell. To this end, a simple battery model capable of capturing degradation and different tests have been proposed to replicate real application scenarios, and the performance of the ES algorithm in such scenarios has been measured. The results are positive, obtaining converging estimations both with new and aged batteries, with accurate outputs for the intended purpose.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14227496</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aging ; Algorithms ; Batteries ; battery aging ; Electric potential ; Energy storage ; extremum seeking ; Li-ion battery ; Lithium ; Lithium-ion batteries ; Machine learning ; Parameter estimation ; Parameter identification ; parameter tracking ; SoC ; SoH ; State of charge ; Voltage ; Waveforms</subject><ispartof>Energies (Basel), 2021-11, Vol.14 (22), p.7496</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-8401782d7a7d1290dd47a6762a119bcff2aa845f5fdb6f51d2bfe7ed0d165d0d3</cites><orcidid>0000-0002-7897-3596 ; 0000-0002-8451-0846 ; 0000-0003-0198-5094 ; 0000-0001-5664-7063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602040199/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602040199?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Sanz-Gorrachategui, Iván</creatorcontrib><creatorcontrib>Pastor-Flores, Pablo</creatorcontrib><creatorcontrib>Bono-Nuez, Antonio</creatorcontrib><creatorcontrib>Ferrer-Sánchez, Cora</creatorcontrib><creatorcontrib>Guillén-Asensio, Alejandro</creatorcontrib><creatorcontrib>Bernal-Ruiz, Carlos</creatorcontrib><title>Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation</title><title>Energies (Basel)</title><description>Battery parameters such as State of Charge (SoC) and State of Health (SoH) are key to modern applications; thus, there is interest in developing robust algorithms for estimating them. Most of the techniques explored to this end rely on a battery model. As batteries age, their behavior starts differing from the models, so it is vital to update such models in order to be able to track battery behavior after some time in application. This paper presents a method for performing online battery parameter tracking by using the Extremum Seeking (ES) algorithm. This algorithm fits voltage waveforms by tuning the internal parameters of an estimation model and comparing the voltage output with the real battery. The goal is to estimate the electrical parameters of the battery model and to be able to obtain them even as batteries age, when the model behaves different than the cell. To this end, a simple battery model capable of capturing degradation and different tests have been proposed to replicate real application scenarios, and the performance of the ES algorithm in such scenarios has been measured. The results are positive, obtaining converging estimations both with new and aged batteries, with accurate outputs for the intended purpose.</description><subject>Aging</subject><subject>Algorithms</subject><subject>Batteries</subject><subject>battery aging</subject><subject>Electric potential</subject><subject>Energy storage</subject><subject>extremum seeking</subject><subject>Li-ion battery</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Machine learning</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>parameter tracking</subject><subject>SoC</subject><subject>SoH</subject><subject>State of charge</subject><subject>Voltage</subject><subject>Waveforms</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgqb34CwLehOh-ZTd7rLVqoKCgnpfJfsStTVI3W7H_3rQVdQ5vHsObNw8mSc4xuqJUomvbYkaIYJIfJSMsJc8wEvT4Hz9NJn2_RENRiimlo0QvfHzzmyYruza9gRht2KZPEKCxA01LY9vondcQ_SD49JDOv2KwzaZJn619922dzrq298aGHZ_WO4TWpLe2DmD2a2fJiYNVbyc_fZy83s1fZg_Z4vG-nE0XmaYExaxgCIuCGAHCYCKRMUwAF5wAxrLSzhGAguUud6biLseGVM4Ka5DBPB-QjpPy4Gs6WKp18A2ErerAq_2gC7WCEL1eWZVTzSrjsMSgGaOkIBUjAnFNsKGEV4PXxcFrHbqPje2jWnab0A7xFeGIoCGrlIPq8qDSoev7YN3vVYzU7ifq7yf0G-CofiU</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Sanz-Gorrachategui, Iván</creator><creator>Pastor-Flores, Pablo</creator><creator>Bono-Nuez, Antonio</creator><creator>Ferrer-Sánchez, Cora</creator><creator>Guillén-Asensio, Alejandro</creator><creator>Bernal-Ruiz, Carlos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7897-3596</orcidid><orcidid>https://orcid.org/0000-0002-8451-0846</orcidid><orcidid>https://orcid.org/0000-0003-0198-5094</orcidid><orcidid>https://orcid.org/0000-0001-5664-7063</orcidid></search><sort><creationdate>20211101</creationdate><title>Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation</title><author>Sanz-Gorrachategui, Iván ; Pastor-Flores, Pablo ; Bono-Nuez, Antonio ; Ferrer-Sánchez, Cora ; Guillén-Asensio, Alejandro ; Bernal-Ruiz, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-8401782d7a7d1290dd47a6762a119bcff2aa845f5fdb6f51d2bfe7ed0d165d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aging</topic><topic>Algorithms</topic><topic>Batteries</topic><topic>battery aging</topic><topic>Electric potential</topic><topic>Energy storage</topic><topic>extremum seeking</topic><topic>Li-ion battery</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Machine learning</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>parameter tracking</topic><topic>SoC</topic><topic>SoH</topic><topic>State of charge</topic><topic>Voltage</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanz-Gorrachategui, Iván</creatorcontrib><creatorcontrib>Pastor-Flores, Pablo</creatorcontrib><creatorcontrib>Bono-Nuez, Antonio</creatorcontrib><creatorcontrib>Ferrer-Sánchez, Cora</creatorcontrib><creatorcontrib>Guillén-Asensio, Alejandro</creatorcontrib><creatorcontrib>Bernal-Ruiz, Carlos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanz-Gorrachategui, Iván</au><au>Pastor-Flores, Pablo</au><au>Bono-Nuez, Antonio</au><au>Ferrer-Sánchez, Cora</au><au>Guillén-Asensio, Alejandro</au><au>Bernal-Ruiz, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation</atitle><jtitle>Energies (Basel)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>14</volume><issue>22</issue><spage>7496</spage><pages>7496-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Battery parameters such as State of Charge (SoC) and State of Health (SoH) are key to modern applications; thus, there is interest in developing robust algorithms for estimating them. Most of the techniques explored to this end rely on a battery model. As batteries age, their behavior starts differing from the models, so it is vital to update such models in order to be able to track battery behavior after some time in application. This paper presents a method for performing online battery parameter tracking by using the Extremum Seeking (ES) algorithm. This algorithm fits voltage waveforms by tuning the internal parameters of an estimation model and comparing the voltage output with the real battery. The goal is to estimate the electrical parameters of the battery model and to be able to obtain them even as batteries age, when the model behaves different than the cell. To this end, a simple battery model capable of capturing degradation and different tests have been proposed to replicate real application scenarios, and the performance of the ES algorithm in such scenarios has been measured. The results are positive, obtaining converging estimations both with new and aged batteries, with accurate outputs for the intended purpose.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en14227496</doi><orcidid>https://orcid.org/0000-0002-7897-3596</orcidid><orcidid>https://orcid.org/0000-0002-8451-0846</orcidid><orcidid>https://orcid.org/0000-0003-0198-5094</orcidid><orcidid>https://orcid.org/0000-0001-5664-7063</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2021-11, Vol.14 (22), p.7496 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_53c4bdf191ac443282b42706c21d326b |
source | Publicly Available Content (ProQuest) |
subjects | Aging Algorithms Batteries battery aging Electric potential Energy storage extremum seeking Li-ion battery Lithium Lithium-ion batteries Machine learning Parameter estimation Parameter identification parameter tracking SoC SoH State of charge Voltage Waveforms |
title | Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium-Ion%20Battery%20Parameter%20Identification%20via%20Extremum%20Seeking%20Considering%20Aging%20and%20Degradation&rft.jtitle=Energies%20(Basel)&rft.au=Sanz-Gorrachategui,%20Iv%C3%A1n&rft.date=2021-11-01&rft.volume=14&rft.issue=22&rft.spage=7496&rft.pages=7496-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14227496&rft_dat=%3Cproquest_doaj_%3E2602040199%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-8401782d7a7d1290dd47a6762a119bcff2aa845f5fdb6f51d2bfe7ed0d165d0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602040199&rft_id=info:pmid/&rfr_iscdi=true |