Loading…

Dynamic nucleolar phase separation influenced by non-canonical function of LIN28A instructs pluripotent stem cell fate decisions

LIN28A is important in somatic reprogramming and pluripotency regulation. Although previous studies addressed that LIN28A can repress let-7 microRNA maturation in the cytoplasm, few focused on its role within the nucleus. Here, we show that the nucleolus-localized LIN28A protein undergoes liquid-liq...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-02, Vol.15 (1), p.1256-1256, Article 1256
Main Authors: Tan, Tianyu, Gao, Bo, Yu, Hua, Pan, Hongru, Sun, Zhen, Lei, Anhua, Zhang, Li, Lu, Hengxing, Wu, Hao, Daley, George Q., Feng, Yu, Zhang, Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:LIN28A is important in somatic reprogramming and pluripotency regulation. Although previous studies addressed that LIN28A can repress let-7 microRNA maturation in the cytoplasm, few focused on its role within the nucleus. Here, we show that the nucleolus-localized LIN28A protein undergoes liquid-liquid phase separation (LLPS) in mouse embryonic stem cells (mESCs) and in vitro. The RNA binding domains (RBD) and intrinsically disordered regions (IDR) of LIN28A contribute to LIN28A and the other nucleolar proteins’ phase-separated condensate establishment. S120A, S200A and R192G mutations in the IDR result in subcellular mislocalization of LIN28A and abnormal nucleolar phase separation. Moreover, we find that the naive-to-primed pluripotency state conversion and the reprogramming are associated with dynamic nucleolar remodeling, which depends on LIN28A’s phase separation capacity, because the LIN28A IDR point mutations abolish its role in regulating nucleolus and in these cell fate decision processes, and an exogenous IDR rescues it. These findings shed light on the nucleolar function in pluripotent stem cell states and on a non-canonical RNA-independent role of LIN28A in phase separation and cell fate decisions. The role of nucleolar phase separation in stem cell fate decision is not well understood. Here, the authors show that the nucleolus-localized LIN28A protein undergoes LLPS in mESCs and in vitro, and that pluripotency state conversion depends on this phase separation capacity.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-45451-4