Loading…
Blood cytokine profile quantitative characteristics evaluation for identifying infection risk group in pigs
Diseases in newborn animals cause significant damage to animal husbandry. This is a complex problem, in which, along with such factors as the environment and the pathogen, an important role is played by the reaction of the body of newborns and their close connection with the mother's body. The...
Saved in:
Published in: | E3S web of conferences 2023-01, Vol.413, p.1001 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diseases in newborn animals cause significant damage to animal husbandry. This is a complex problem, in which, along with such factors as the environment and the pathogen, an important role is played by the reaction of the body of newborns and their close connection with the mother's body. The study of enzyme relationships in the functional system «mother-fetus-newborn» can make a significant contribution to solving the problem of improving the safety of the population of newborn animals. Newborn animals have different degrees of functional maturity. Functional capacity of some organs and the system of the newborn, in comparison with the parent individuals, can be determined both genetically and by the conditions of intrauterine development. Currently, a sufficient number of facts have been accumulated that any deviations or violations of homeostasis parameters the mother's body affects the fetus and vice versa. The main role in compensating for impaired functions belongs to the mother's body, but the fetus is also able to participate in these reactions to a certain extent. Functional integration of fetal and maternal homologous systems when performing homeostatic functions concerns the activity of the blood enzyme component. The aim of our research was to study quantitative and qualitative changes in the activity of blood enzymes in animals aged from 27 to 204 days. |
---|---|
ISSN: | 2267-1242 2267-1242 |
DOI: | 10.1051/e3sconf/202341301001 |